【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.

【答案】
(1)解:聯(lián)立得: ,

解得: ,

∴圓心C(3,2).

若k不存在,不合題意;

若k存在,設切線為:y=kx+3,可得圓心到切線的距離d=r,即 =1,

解得:k=0或k=﹣ ,

則所求切線為y=3或y=﹣ x+3;


(2)解:設點M(x,y),由MA=2MO,知: =2

化簡得:x2+(y+1)2=4,

∴點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,

又∵點M在圓C上,C(a,2a﹣4),

∴圓C與圓D的關系為相交或相切,

∴1≤|CD|≤3,其中|CD|=

∴1≤ ≤3,

解得:0≤a≤


【解析】(1)聯(lián)立直線l與直線y=x﹣1解析式,求出方程組的解得到圓心C坐標,根據(jù)A坐標設出切線的方程,由圓心到切線的距離等于圓的半徑,列出關于k的方程,求出方程的解得到k的值,確定出切線方程即可;(2)設M(x,y),由MA=2MO,利用兩點間的距離公式列出關系式,整理后得到點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相交或相切,根據(jù)兩圓的半徑長,得出兩圓心間的距離范圍,利用兩點間的距離公式列出不等式,求出不等式的解集,即可得到a的范圍.
【考點精析】通過靈活運用點到直線的距離公式,掌握點到直線的距離為:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}和等比數(shù)列{bn},其中{an}的公差不為0.設Sn是數(shù)列{an}的前n項和.若a1 , a2 , a5是數(shù)列{bn}的前3項,且S4=16.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若數(shù)列{ }為等差數(shù)列,求實數(shù)t;
(3)構(gòu)造數(shù)列a1 , b1 , a2 , b1 , b2 , a3 , b1 , b2 , b3 , …,ak , b1 , b2 , …,bk , …,若該數(shù)列前n項和Tn=1821,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃種植A,B兩種中藥材,該公司最多能承包50畝的土地,可使用的周轉(zhuǎn)資金不超過54萬元,假設藥材A售價為0.55萬元/噸,產(chǎn)量為4噸/畝,種植成本1.2萬元/畝;藥材B售價為0.3萬元/噸,產(chǎn)量為6噸/畝,種植成本0.9萬元/畝時公司的總利潤最大,則A,B兩種中藥材的種植面積應各為多少畝,最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知向量 ,且
(1)求角B的大小;
(2)若b=2,△ABC的面積為 ,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準03.5,用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.

(1)由于某種原因頻率分布直方圖部分數(shù)據(jù)丟失,請在圖中將其補充完整;
(2)用樣本估計總體,如果希望80%的居民每月的用水量不超出標準03.5,則月均用水量的最低標準定為多少噸,請說明理由;
(3)從頻率分布直方圖中估計該100位居民月均用水量的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐 中,底面ABCD是直角梯形, ,平面 底面ABCD, O為AD的中點, M是棱PC上的點, AD=2AB.

(1)求證:平面 平面PAD;
(2)若 平面BMO,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC三個頂點坐標為A(0,1),B(0,﹣1),C(﹣2,1).
(I)求AC邊中線所在直線方程;
(II)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ax﹣1(e為自然對數(shù)的底數(shù)). (Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過點P(﹣1,3). (Ⅰ)若直線l與直線m:3x+y﹣1=0垂直,求直線l的一般式方程;
(Ⅱ)寫出(Ⅰ)中直線l的截距式方程,并求直線l與坐標軸圍成的三角形的面積.

查看答案和解析>>

同步練習冊答案