【題目】某校2019屆高三年級(jí)參加市高考模擬考試的學(xué)生有1000人,隨機(jī)抽取了一個(gè)容量為200的學(xué)生總成績(jī)(滿分750分)的樣本,各分?jǐn)?shù)段人數(shù)如表所示:

分?jǐn)?shù)段

人數(shù)

20

30

80

40

30

1)列出頻率分布表;

2)畫出頻率分布直方圖;

3)若本次模擬考試一本的預(yù)測(cè)分?jǐn)?shù)線為550分,試估計(jì)該校的一本上線人數(shù).

【答案】1)見解析 2)見解析 3350

【解析】

1)根據(jù)題目中的數(shù)據(jù),列出頻率分布表;

2)根據(jù)頻率分布表,畫出頻率分布直方圖;

3)由頻率分布表,利用頻率=頻數(shù)÷組距由此估計(jì)該校本科模擬上線人數(shù).

1)頻率分布表如下:

分?jǐn)?shù)段

頻數(shù)

頻率

20

0.10

30

0.15

80

0.40

40

0.20

30

0.15

合計(jì)

200

1.00

2)根據(jù)頻率分布表,畫出頻率分布直方圖如下:

3)由頻率分布表,

知在樣本中成績(jī)?cè)?/span>550分及以上的人數(shù)頻率為,

由此可以估計(jì)該校的一本上線人數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值.

)設(shè),當(dāng)時(shí),函數(shù)的圖象恒不在直線的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定一個(gè),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).的充分必要條件,使得是一個(gè)等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績(jī)情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(jī)(得分均為整數(shù),滿分100)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問(wèn)題:

(1)求的值;

(2)若從成績(jī)較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)的直線與拋物線相切,設(shè)第一象限的切點(diǎn)為.

(Ⅰ)證明:點(diǎn)軸上的射影為焦點(diǎn);

(Ⅱ)若過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),圓是以線段為直徑的圓且過(guò)點(diǎn),求直線與圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù),求實(shí)數(shù)m的值,使得復(fù)數(shù)z分別是:

(1)0;(2)虛數(shù);(3)純虛數(shù);(4)復(fù)平面內(nèi)第二、四象限角平分線上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)某種商品噸,此時(shí)所需生產(chǎn)費(fèi)用為萬(wàn)元,當(dāng)出售這種商品時(shí),每噸價(jià)格為萬(wàn)元,這里為常數(shù),.

1)為了使這種商品的生產(chǎn)費(fèi)用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?

2)如果生產(chǎn)出來(lái)的商品能全部賣完,當(dāng)產(chǎn)量是120噸時(shí)企業(yè)利潤(rùn)最大,此時(shí)出售價(jià)格是每噸160萬(wàn)元,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案