【題目】已知拋物線,過(guò)點(diǎn)的直線與拋物線相切,設(shè)第一象限的切點(diǎn)為.
(Ⅰ)證明:點(diǎn)在軸上的射影為焦點(diǎn);
(Ⅱ)若過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),圓是以線段為直徑的圓且過(guò)點(diǎn),求直線與圓的方程.
【答案】(I)詳見(jiàn)解析;(II)詳見(jiàn)解析.
【解析】
(Ⅰ)設(shè)過(guò)點(diǎn)的直線方程為,與拋物線方程聯(lián)立消元后得到二次方程,根據(jù)判別式為零得到,當(dāng)時(shí)可求得點(diǎn)坐標(biāo)為,而焦點(diǎn)為,故結(jié)論成立.(Ⅱ)設(shè)直線的方程為,與拋物線方程聯(lián)立消元后得到二次方程.由圓是以線段為直徑的圓且過(guò)點(diǎn)可得,然后結(jié)合根與系數(shù)的關(guān)系求出或,進(jìn)而可得所求方程.
(Ⅰ)由題意知可設(shè)過(guò)點(diǎn)的直線方程為,
由消去整理得,
又因?yàn)橹本與拋物線相切,
所以,解得.
當(dāng)時(shí),直線方程為,可得點(diǎn)坐標(biāo)為,
又因?yàn)榻裹c(diǎn),
所以點(diǎn)在軸上的射影為焦點(diǎn).
(Ⅱ)設(shè)直線的方程為,
由,
其中恒成立.
設(shè),,
則,
所以,.
由于圓是以線段為直徑的圓過(guò)點(diǎn),則,
所以
所以,
解得或.
當(dāng)時(shí),直線的方程為,圓的方程為;
當(dāng)時(shí),直線的方程為,圓的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),g(x)=f(x)-a,
(1)討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù),并寫(xiě)出相應(yīng)的實(shí)數(shù)a的取值范圍;
(2)當(dāng)函數(shù)g(x)有四個(gè)零點(diǎn)分別為x1,x2,x3,x4時(shí),求x1+x2+x3+x4的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿(mǎn)足,數(shù)列滿(mǎn)足.
Ⅰ求數(shù)列和數(shù)列的通項(xiàng)公式;
Ⅱ令,若對(duì)于一切的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍;
Ⅲ數(shù)列中是否存在,且 使,,成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校2019屆高三年級(jí)參加市高考模擬考試的學(xué)生有1000人,隨機(jī)抽取了一個(gè)容量為200的學(xué)生總成績(jī)(滿(mǎn)分750分)的樣本,各分?jǐn)?shù)段人數(shù)如表所示:
分?jǐn)?shù)段 | |||||
人數(shù) | 20 | 30 | 80 | 40 | 30 |
(1)列出頻率分布表;
(2)畫(huà)出頻率分布直方圖;
(3)若本次模擬考試一本的預(yù)測(cè)分?jǐn)?shù)線為550分,試估計(jì)該校的一本上線人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次高三年級(jí)統(tǒng)一考試中,數(shù)學(xué)試卷有一道滿(mǎn)分為10分的選做題,學(xué)生可以從A,B兩道題目中任選一題作答,某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,計(jì)劃從900名學(xué)生的選做題成績(jī)中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名學(xué)生的選做題成績(jī)隨機(jī)編號(hào)為001,002,…,900.若采用分層隨機(jī)抽樣,按照學(xué)生選擇A題目或B題目,將成績(jī)分為兩層,且樣本中選擇A題目的成績(jī)有8個(gè),平均數(shù)為7,方差為4;樣本中選擇B題目的成績(jī)有2個(gè),平均數(shù)為8,方差為1.試用樣本估計(jì)該校900名學(xué)生的選做題得分的平均數(shù)與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn)條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式:ax2-2(a+1)x+4>0,a∈R.
(1)當(dāng)a=-4時(shí),求不等式的解集;
(2)當(dāng)a>0時(shí),求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓+=1與雙曲線-=1有公共的焦點(diǎn)F1,F2,P是兩曲線的一個(gè)交點(diǎn),則cos∠F1PF2=______ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com