分析 (1)求出半圓的圓心和半徑,求得圓與x軸的交點(diǎn),即有a=2,令y=2,解得交點(diǎn),代入雙曲線方程,解得b,進(jìn)而得到雙曲線的方程;
(2)求出焦點(diǎn)坐標(biāo),∠F1PF2是直角,則設(shè)P(x,y),則有x2+y2=8,聯(lián)立兩半圓的方程及雙曲線方程,解得交點(diǎn),注意檢驗(yàn),即可得到所求的P的坐標(biāo).
(3)分類討論,求出|MN|,即可得出結(jié)論.
解答 解:(1)上半個(gè)圓所在圓方程是x2+y2-4y-4=0,則圓心為(0,2),半徑為2$\sqrt{2}$.
則下半個(gè)圓所在圓的圓心為(0,-2),半徑為2$\sqrt{2}$.
雙曲線的左、右頂點(diǎn)A、B是該圓與x軸的交點(diǎn),即為(-2,0),(2,0),即a=2,
由于雙曲線與半圓相交于與x軸平行的直徑的兩端點(diǎn),則令y=2,解得,x=±2$\sqrt{2}$.
即有交點(diǎn)為(±2$\sqrt{2}$,2).
設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
則$\frac{8}{{a}^{2}}$-$\frac{4}{^{2}}$=1,且a=2,解得,b=2.
則雙曲線的方程為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1;
(2)雙曲線的左、右焦點(diǎn)為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),
若∠F1PF2是直角,則設(shè)P(x,y),則有x2+y2=8,
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=8}\\{{x}^{2}-{y}^{2}=4}\end{array}\right.$解得,x2=6,y2=2.
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=8}\\{{x}^{2}+(y±2)^{2}=8}\end{array}\right.$解得,y=±1,不滿足題意,舍去.
故在“8”字形曲線上所求點(diǎn)P的坐標(biāo)為($±\sqrt{6},\sqrt{2}$),($±\sqrt{6},-\sqrt{2}$).
(3)設(shè)M,N的橫坐標(biāo)分別為xM,xN.
①直線l的斜率不存在時(shí),|MN|=8;
②直線l的斜率存在時(shí),設(shè)方程為y=k(x+2),
代入x2+y2-4y-4=0,可得(k2+1)x2+(4k2-4k)x+4k2-8k-4=0,
∴-2xM=$\frac{4{k}^{2}-8k-4}{{k}^{2}+1}$,
∴xM=$\frac{-2{k}^{2}+4k+2}{{k}^{2}+1}$,
同理xN=$\frac{-2{k}^{2}-4k+2}{{k}^{2}+1}$,
∴|MN|=$\sqrt{{k}^{2}+1}$|xM-xN|=$\frac{|8k|}{\sqrt{{k}^{2}+1}}$<8,
∴|MN|的最大長(zhǎng)度為8.
點(diǎn)評(píng) 本題考查雙曲線的方程的求法,考查圓與圓、雙曲線的位置關(guān)系,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北襄陽(yáng)四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:解答題
如圖所示的多面體中,已知菱形和直角梯形所在的平面互相垂直,其中為直角,,,.
(1)求證:平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2015 | B. | 2016 | C. | 2017 | D. | 無(wú)數(shù)個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北襄陽(yáng)四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
將函數(shù)的圖象向右平移個(gè)單位,再縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,所得新圖象的函數(shù)解析式是( )
A.y=sin4x B.y=sinx
C.y=sin(4x﹣) D.y=sin(x﹣)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北襄陽(yáng)四中高三七月周考三數(shù)學(xué)(理)試卷(解析版) 題型:解答題
已知函數(shù)的圖象過(guò)點(diǎn).
(Ⅰ)求的值;
(Ⅱ)在△中,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7-$\frac{π}{4}$ | B. | 7-$\frac{π}{2}$ | C. | 6-$\frac{π}{2}$ | D. | 6-π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com