12.已知曲線C的參數(shù)方程為:$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}}\right.$(t為參數(shù)),點(diǎn)P(2,1),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出曲線C和直線l在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程;
(2)求|PA|•|PB|的值.

分析 (1)由曲線C的參數(shù)方程為:$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),利用cos2θ+sin2θ=1可得:曲線C的標(biāo)準(zhǔn)方程.直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}}\right.$(t為參數(shù)),消去參數(shù)t可得:直線l的標(biāo)準(zhǔn)方程.
(2)將直線l的參數(shù)方程化為標(biāo)準(zhǔn)方程:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),代入橢圓方程,利用|PA||PB|=|t1t2|即可得出.

解答 解:(1)由曲線C的參數(shù)方程為:$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),利用cos2θ+sin2θ=1可得:曲線C的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}$+y2=1,
直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}}\right.$(t為參數(shù)),消去參數(shù)t可得:直線l的標(biāo)準(zhǔn)方程為:$x-\sqrt{3}$y-2+$\sqrt{3}$=0.
(2)將直線l的參數(shù)方程化為標(biāo)準(zhǔn)方程:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),
代入橢圓方程得:5t2+8$(\sqrt{3}+1)$t+16=0,
∴|PA||PB|=|t1t2|=$\frac{16}{5}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=1+2sinxcosx.
(1)求函數(shù)的最小正周期;
(2)當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{6}$]時(shí),求最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)由不等式組$\left\{\begin{array}{l}x-2y≥0\\ x+3y≥0\end{array}\right.$所確定的平面區(qū)域?yàn)棣,若?dòng)點(diǎn)P(x,y)在圓x2+y2=1上運(yùn)動(dòng),則動(dòng)點(diǎn)P落在區(qū)域Ω內(nèi)的概率為$\frac{1}{8}$,若動(dòng)點(diǎn)P(x,y)在平面區(qū)域Ω內(nèi),且滿足0≤x≤2,則函數(shù)f(x,y)=x-y的最大值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是參數(shù)).
(1)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=$\sqrt{14}$,試求實(shí)數(shù)m值.
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+2y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓O:x2+y2=1的切線l與橢圓C:x2+3y2=4相交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1與定點(diǎn)A(1,2),F(xiàn)是橢圓C的右焦點(diǎn),點(diǎn)M是橢圓C上的動(dòng)點(diǎn),則當(dāng)$\frac{AM}{3}$+MF取最小值時(shí),點(diǎn)M的坐標(biāo)為($\frac{3\sqrt{2}}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知圓C的方程:x2+y2-2x-4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且$|{MN}|=\frac{{4\sqrt{5}}}{5}$,求m的值;
(2)在(1)的條件下,是否存在直線l:x-2y+c=0,使得圓上恰有四個(gè)點(diǎn)到直線l的距離為$\frac{{\sqrt{5}}}{5}$,若存在,求出c的范圍,若不存在,說明理由.
(3)若圓C上存在點(diǎn)P,使|PA|=2|PO|,其中點(diǎn)A(-3,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在四棱錐P-ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2.
(1)求異面直線PA,BC所成角;
(2)設(shè)Q為棱PC上一點(diǎn),$\overrightarrow{PQ}$=λ$\overrightarrow{PC}$,試確定λ的值,使得二面角Q-BD-P為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2(x+7),則f(-1)=( 。
A.-3B.-1C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案