4.若復數(shù)$\frac{a+i}{1-i}$是純虛數(shù),其中i為虛數(shù)單位,則實數(shù)a的值為(  )
A.-1B.0C.1D.2

分析 利用復數(shù)的運算法則、純虛數(shù)的定義即可得出.

解答 解:復數(shù)$\frac{a+i}{1-i}$=$\frac{(a+i)(1+i)}{(1-i)(1+i)}$=$\frac{a-1}{2}$+$\frac{(a+1)i}{2}$是純虛數(shù),∴$\frac{a-1}{2}$=0,$\frac{a+1}{2}$≠0,解得a=1.
故選:C.

點評 本題考查了復數(shù)的運算法則、純虛數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{x}$+x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知點P(-1,1)和點Q(2,2),若直線l:x+my+m=0與線段PQ沒有公共點,則實數(shù)m的取值范圍是m<-$\frac{2}{3}$或m$>\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知不等式$\frac{k{x}^{2}+kx+6}{{x}^{2}+x+2}$>2對任意x∈R恒成立,則k的取值范圍為[2,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC的三邊長a=3,b=4,c=$\sqrt{37}$,求最大角的度數(shù)( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若g(x+1)=2x-2,則g(0)=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知直線$l\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ-2cosθ,若直線l與曲線C相交與A、B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與剩余部分體積的比值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)$z=\frac{4+bi}{1-i}({b∈R})$的實部為-1,則復數(shù)z-b在復平面上對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案