5.如圖所示,在正方體ABCD-A1B1C1D1中,點(diǎn)M是平面A1B1C1D1內(nèi)一點(diǎn),且BM∥平面ACD1,則tan∠DMD1的最大值為( 。
A.$\frac{\sqrt{2}}{2}$B.1C.2D.$\sqrt{2}$

分析 根據(jù)題意,連接A1C1,B1D1,交于點(diǎn)M,點(diǎn)M滿足條件,通過證明得出A1C1∥平面ACD1,BM∥平面ACD1,得出點(diǎn)M在直線A1C1上時(shí),都滿足BM∥ACD1
從而求出tan∠DMD1的最大值.

解答 解:如圖所示,
正方體ABCD-A1B1C1D1中,連接A1C1,B1D1,交于點(diǎn)M,則點(diǎn)M滿足條件;
證明如下,連接BD,交AC于點(diǎn)O,連接BM,OB1,
則A1A∥C1C,且A1A=C1C,
∴四邊形ACC1A1是平行四邊形,
∴AC∥A1C1
又AC?平面ACD1,且A1C1?平面ACD1,
∴A1C1∥平面ACD1;
同理BM∥D1O,BM∥平面ACD1,
∴當(dāng)M在直線A1C1上時(shí),都滿足BM∥ACD1;
∴tan∠DMD1=$\frac{{DD}_{1}}{{MD}_{1}}$=$\frac{1}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$是最大值.
故選:D.

點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了推理與運(yùn)算能力的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an-n(n∈N*).
(1)證明數(shù)列{an+1}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2(an+1),求數(shù)列{$\frac{_{n}}{{a}_{n}+1}$}的前n項(xiàng)和Tn,并證明:$\frac{1}{2}$≤Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若正數(shù)m,n滿足m+n=6,則$\frac{1}{m}$$+\frac{4}{n}$的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB是圓O的直徑,點(diǎn)C是半圓的中點(diǎn),PA⊥平面ABC,PA=AB,PB=6D是PB的中點(diǎn),E是PC上一點(diǎn).
(Ⅰ) 若DE⊥PB,求$\frac{PE}{EC}$的值;
(Ⅱ)若點(diǎn)Q是平面ABC內(nèi)一點(diǎn),且|QA|=2|QC|,求點(diǎn)Q在△ABC內(nèi)的軌跡長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知圓柱的軸截面是面積為4的正方形,則此圓柱的體積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AE⊥BD于E,延長AE交BC與F,將△ABD沿BD折起,使平面ABD⊥平面BCD,如圖2所示
(Ⅰ) 求證:平面AEF⊥平面BCD;
(Ⅱ) 在線段AF上是否存在點(diǎn)M使得EM∥平面ADC?若存在,請指明點(diǎn)M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,長方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,點(diǎn)E、F、G分別是DD1、AB、CC1的中點(diǎn),則異面直線A1E與GF所成的角的余弦值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),F(xiàn)為PC的中點(diǎn),PA=2AB=2.
(1)求證:平面PAC⊥平面AEF;
(2)求二面角C-AE-F的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$f(x)=\left\{\begin{array}{l}|{{{log}_3}x}|,0<x≤3\\ \frac{1}{3}{x^2}-\frac{10}{3}x+8,x>3\end{array}\right.,a,b,c,d$是互不相同的正數(shù),且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是(21,24).

查看答案和解析>>

同步練習(xí)冊答案