4.(1+x)(2x-$\frac{1}{x}$)5的展開式中含x2的項的系數(shù)為( 。
A.-80B.-40C.40D.80

分析 根據(jù)題意,(1+x)(2x-$\frac{1}{x}$)5的展開式中含x2項的系數(shù)由(2x-$\frac{1}{x}$)5展開式的含x項的系數(shù)乘以(1+x)中含x項的系數(shù)再加上(2x-$\frac{1}{x}$)5展開式中含x2項的系數(shù)乘以(1+x)的常數(shù)項的積,由此求出結(jié)果.

解答 解:∵(2x-$\frac{1}{x}$)5展開式的通項公式為
Tr+1=${C}_{5}^{r}$•(2x)5-r•${(-\frac{1}{x})}^{r}$=(-1)r•25-r•${C}_{5}^{r}$•x5-2r,
令5-2r=1,解得r=2;
∴(2x-$\frac{1}{x}$)5展開式中含x項的系數(shù)為23•${C}_{5}^{2}$=80,
令5-2r=2,解得r=$\frac{3}{2}$,不合題意,應(yīng)舍去;
綜上,(1+x)(2x-$\frac{1}{x}$)5的展開式中含x2項的系數(shù)為80×1=80.
故選:D.

點評 本題主要考查了二項式定理的應(yīng)用問題,解題時應(yīng)靈活應(yīng)用二項展開式的通項公式,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2,則2f(x)-f($\sqrt{2}$x)=0;若對任意的x∈[a,a+1],不等式f(x+a)≥2f(x)恒成立,則實數(shù)a的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知m,n>0,且m+n=16,求$\frac{1}{2}$mn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=log2(x+1)+1(x>1)的反函數(shù)為( 。
A.y=2x-1+1(x>2)B.y=2x+1+1(x>0)C.y=2x-1-1(x>2)D.y=2x+1-1(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=cosxB.y=2xC.y=2-x2D.y=${log}_{\frac{1}{3}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等差數(shù)列a1,a2,a3…,且a2=2,令bn=2${\;}^{{a}_{n}}$(n=1,2,3,…),則b1•b3=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=6,向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,∠AOB=θ.
(1)若θ=90°,求|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-$\overrightarrow$|;
(2)若θ=60°,求|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-$\overrightarrow$|;
(3)若θ=120°,求|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-$\overrightarrow$|;
(4)若θ確定,則|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-$\overrightarrow$|能否確定?并求當(dāng)θ變化時它們的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=3sin({ωx+\frac{π}{6}})({ω>0})$,且以$\frac{π}{2}$為最小正周期.
(1)求f(0); 
(2)求f(x)的解析式; 
(3)設(shè)$α∈({0,\frac{π}{2}})$,則$f({\frac{α}{2}})=\frac{3}{2}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,左、右兩頂點分別為A1,A2,以A1A2為直徑的圓與雙曲線的一條漸近線交于點P(點P在第一象限內(nèi)),若直線FP平行于另一條漸近線,則該雙曲線離心率e的值為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案