分組 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
分析 (1)由分層抽樣性質(zhì)得甲校抽取學(xué)生人數(shù)為55人,乙校抽取的學(xué)生人數(shù)為50人,由此能求出x,y.
(2)乙校抽取的50名學(xué)生中,考試成績(jī)?cè)赱120,150]內(nèi)有20人,將頻率視為概率,乙校高三學(xué)年三模數(shù)學(xué)成績(jī)優(yōu)秀的概率為$\frac{2}{5}$,從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績(jī),其中優(yōu)秀的人數(shù)為X,則X~B(3,$\frac{2}{5}$),由此能求出X的分布列和EX.
解答 解:(1)由分層抽樣性質(zhì)得甲校抽取學(xué)生人數(shù)為:1100×$\frac{105}{1100+1000}$=55人,
乙校抽取的學(xué)生人數(shù)為:1000×$\frac{105}{1100+1000}$=50人,
∴x=55-2-3-10-15-15-3-1=6,
y=50-1-2-9-8-10-10-3=7.
(2)乙校抽取的50名學(xué)生中,考試成績(jī)?cè)赱120,150]內(nèi)有10+7+3=20人,
∴將頻率視為概率,乙校高三學(xué)年三模數(shù)學(xué)成績(jī)優(yōu)秀的概率為$\frac{2}{5}$,
從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績(jī),其中優(yōu)秀的人數(shù)為X,則X~B(3,$\frac{2}{5}$),
P(X=0)=${C}_{3}^{0}(\frac{2}{5})^{0}(\frac{3}{5})^{3}$=$\frac{27}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{2}{5})(\frac{3}{5})^{2}$=$\frac{54}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{2}{5})^{2}(\frac{3}{5})$=$\frac{36}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{2}{5})^{3}(\frac{3}{5})^{0}$=$\frac{8}{125}$,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{27}{125}$ | $\frac{54}{125}$ | $\frac{36}{125}$ | $\frac{8}{125}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{\sqrt{2}}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{2\sqrt{2}}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 用一個(gè)平面去截棱錐,棱錐底面和截面之間的部分是棱臺(tái) | |
B. | 兩個(gè)底面平行且相似,其余各面都是梯形的多面體是棱臺(tái) | |
C. | 棱臺(tái)的底面是兩個(gè)相似的正方形 | |
D. | 棱臺(tái)的側(cè)棱延長(zhǎng)后必交于一點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,2] | B. | {-1,0,1} | C. | {-2,-1,0,1,2} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3-2] | B. | (-3-2]∪[0,$\frac{5}{2}$) | C. | (-∞,-3]∪[$\frac{5}{2}$,+∞) | D. | (-∞,-3)∪[$\frac{5}{2}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com