20.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 直接由已知求出兩向量的數(shù)量積與模,代入數(shù)量積求向量的夾角公式得答案.

解答 解:∵$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),
∴$\overrightarrow{BA}•\overrightarrow{BC}=\frac{1}{2}×\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}×\frac{1}{2}$=$\frac{\sqrt{3}}{2}$,$|\overrightarrow{BA}|=|\overrightarrow{BC}|=1$,
∴cos<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{\sqrt{3}}{2}$,
則<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=$\frac{π}{6}$.
故選:A.

點評 本題考查平面向量的數(shù)量積運算,考查了利用數(shù)量積求斜率的夾角,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正三棱柱ABC-A1B1C1中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.通過隨機(jī)詢問100性別不同的大學(xué)生是否愛好某項運動,得到如下2×2列聯(lián)表:
 男總計
愛好40
不愛好25
總計45100
(Ⅰ)將題中的2×2列聯(lián)表補充完整;
(Ⅱ)能否有99%的把握認(rèn)為斷愛好該項運動與性別有關(guān)?請說明理由;
(Ⅲ)利用分層抽樣的方法從以上愛好該項運動的大學(xué)生中抽取6人組建了“運動達(dá)人社”,現(xiàn)從“運動達(dá)人設(shè)”中選派3人參加某項校際挑戰(zhàn)賽,記選出3人中的女大學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a1=-2011,其前n項的和為Sn.若$\frac{{S}_{2010}}{2010}$-$\frac{{S}_{2008}}{2008}$=2,則S2011=(  )
A.-2010B.2010C.2011D.-2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:方程$\frac{{x}^{2}}{1-2m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線;命題q:?x0∈R,x02+2mx0+2-m=0
已知“p∨q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ax3+bx2+cx+d的部分?jǐn)?shù)值如表:
x-3-2-10123456
y-80-2404001660144280
則函數(shù)y=lgf(x)的定義域為(-1,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=sin2 x+2cos2x-cosx+2.
(1)若x∈[$\frac{π}{4}$,$\frac{π}{2}$]求函數(shù)f(x)的最值及對應(yīng)的x的值;
(2)若不等式[f(x)-m]2<1在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩個學(xué)校高三年級分別有1100人、1000人,為了解兩個學(xué)校高三年級全體學(xué)生在該地區(qū)三?荚嚨臄(shù)學(xué)成績情況,采用分層抽樣的方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)12981010y3
(1)計算x,y的值;
(2)若將頻率視為概率,從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績,其中優(yōu)秀的人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線x-$\sqrt{3}$y+3=0的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案