14.下列命題中正確的是(  )
A.用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺
B.兩個底面平行且相似,其余各面都是梯形的多面體是棱臺
C.棱臺的底面是兩個相似的正方形
D.棱臺的側(cè)棱延長后必交于一點

分析 在A中,平面不一定與底面平行;在B中,側(cè)棱不一定相交于一點;在C中,棱臺的底面是兩個相似的多邊形;在D中,由棱臺的性質(zhì)得棱臺的側(cè)棱延長后必交于一點.

解答 解:在A中,用一個平行于底面的平面去截棱錐,棱錐底面和截面之間的部分是棱臺,故A不正確;
在B中,兩個底面平行且相似,其余各面都是梯形的多面體是棱臺,側(cè)棱不一定相交于一點,故B不正確.
在C中,棱臺的底面是兩個相似的多邊形,故C錯誤;
在D中,由棱臺的性質(zhì)得棱臺的側(cè)棱延長后必交于一點,故D正確.
故選:D.

點評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認真審題,注意棱臺的定義及性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)為奇函數(shù)的是( 。
A.f(x)=x3-1B.f(x)=x+cosxC.f(x)=xsinxD.f(x)=lg(x+$\sqrt{{x}^{2}+1}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ax3+bx2+cx+d的部分數(shù)值如表:
x-3-2-10123456
y-80-2404001660144280
則函數(shù)y=lgf(x)的定義域為(-1,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+3≥0}\\{2x+y≥0}\\{x≤0}\end{array}\right.$,若當(dāng)x=-1,y=2時,z=ax+y取得最小值,則a的取值范圍是a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩個學(xué)校高三年級分別有1100人、1000人,為了解兩個學(xué)校高三年級全體學(xué)生在該地區(qū)三?荚嚨臄(shù)學(xué)成績情況,采用分層抽樣的方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)12981010y3
(1)計算x,y的值;
(2)若將頻率視為概率,從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績,其中優(yōu)秀的人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=ax2+bx+3a+b是偶函數(shù),定義域為[a-1,2a].則a+2b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知log2(x+y)=log2x+log2y,則$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)f(x)中,滿足“對任意的x1,x2∈(0,+∞)時,均(x1-x2)[f(x1)-f(x2)]>0”的是( 。
A.f(x)=($\frac{1}{2}$)xB.f(x)=x2-4x+4C.f(x)=|x+2|D.f(x)=log${\;}_{\frac{1}{2}}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.長度為3的線段AB的端點A、B分別在x軸、y軸上運動,若點P滿足$\overrightarrow{BP}$=2$\overrightarrow{PA}$.設(shè)動點P軌跡為曲線C.
(I)求曲線C的方程;
(Ⅱ)點P在曲線C上,點F的坐標(biāo)為($\sqrt{3}$,0),若點Q是直線l:x=$\frac{4\sqrt{3}}{3}$上任意一點,且滿足PF⊥FQ,是判斷直線PQ與曲線C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案