分析 根據(jù)增函數(shù)的定義,設任意的x1,x2∈R,且x1<x2,然后作差,根據(jù)立方差公式分解因式,并配方便可得到${y}_{1}-{y}_{2}=({x}_{1}-{x}_{2})[({x}_{1}+\frac{{x}_{2}}{2})^{2}+\frac{3}{4}{{x}_{2}}^{2}]$,這樣便可證明y1<y2,從而得出原函數(shù)在R上單調(diào)遞增.
解答 證明:設x1,x2∈R,且x1<x2,則:
${y}_{1}-{y}_{2}={{x}_{1}}^{3}-{{x}_{2}}^{3}$=$({x}_{1}-{x}_{2})({{x}_{1}}^{2}+{x}_{1}{x}_{2}+{{x}_{2}}^{2})$=$({x}_{1}-{x}_{2})[({x}_{1}+\frac{{x}_{2}}{2})^{2}+\frac{3}{4}{{x}_{2}}^{2}]$;
∵x1<x2;
∴x1-x2<0,$({x}_{1}+\frac{{x}_{2}}{2})^{2}+\frac{3}{4}{{x}_{2}}^{2}>0$;
∴y1<y2;
∴原函數(shù)在R上是單調(diào)遞增函數(shù).
點評 考查增函數(shù)的定義,以及根據(jù)增函數(shù)的定義證明一個函數(shù)為增函數(shù)的方法和過程,作差的方法比較y1,y2,以及立方差公式和配方法的運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {-1,0,1} | C. | {-1,1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}+ln3$ | B. | 4-ln3 | C. | $\frac{9}{2}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 線段 | B. | 圓 | C. | 橢圓 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<λ1<λ2 | B. | 0<λ2<λ1 | C. | λ1<λ2<0 | D. | λ2<λ1<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com