【題目】已知函數(shù)f(x)=x﹣alnx(a∈R).
(Ⅰ)當(dāng)a=2時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)+ , 求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)若g(x)=﹣ , 在[1,e](e=2.71828…)上存在一點(diǎn)x0 , 使得f(x0)≤g(x0)成立,求a的取值范圍.

【答案】解:(Ⅰ)當(dāng)a=2時,f(x)=x﹣2lnx,f(1)=1,切點(diǎn)(1,1),
,∴k=f′(1)=1﹣2=﹣1,
∴曲線f(x)在點(diǎn)(1,1)處的切線方程為:y﹣1=﹣(x﹣1),即x+y﹣2=0.
(Ⅱ)+,定義域?yàn)椋?,+∞),=,
①當(dāng)a+1>0,即a>﹣1時,令h′(x)>0,
∵x>0,∴x>1+a
令h′(x)<0,∵x>0,∴0<x<1+a.
②當(dāng)a+1≤0,即a≤﹣1時,h′(x)>0恒成立,
綜上:當(dāng)a>﹣1時,h(x)在(0,a+1)上單調(diào)遞減,在(a+1,+∞)上單調(diào)遞增.
當(dāng)a≤﹣1時,h(x)在(0,+∞)上單調(diào)遞增.
(Ⅲ)由題意可知,在[1,e]上存在一點(diǎn)x0 , 使得f(x0)≤g(x0)成立,
即在[1,e]上存在一點(diǎn)x0 , 使得h(x0)≤0,
即函數(shù)h(x)=x-alnx+在[1,e]上的最小值[h(x)]min≤0.
由第(Ⅱ)問,①當(dāng)a+1≥e,即a≥e﹣1時,h(x)在[1,e]上單調(diào)遞減,
,∴
,∴;
②當(dāng)a+1≤1,即a≤0時,h(x)在[1,e]上單調(diào)遞增,
∴[h(x)]min=h(1)=1+1+a≤0,
∴a≤﹣2,
③當(dāng)1<a+1<e,即0<a<e﹣1時,∴[h(x)]min=h(1+a)=2+a﹣aln(1+a)≤0,
∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2
此時不存在x0使h(x0)≤0成立.
綜上可得所求a的范圍是:或a≤﹣2.
【解析】(Ⅰ)求出切點(diǎn)(1,1),求出 , 然后求解斜率k,即可求解曲線f(x)在點(diǎn)(1,1)處的切線方程.
(Ⅱ)求出函數(shù)的定義域,函數(shù)的導(dǎo)函數(shù),①a>﹣1時,②a≤﹣1時,分別求解函數(shù)的單調(diào)區(qū)間即可.
(Ⅲ)轉(zhuǎn)化已知條件為函數(shù)h(x)=x-alnx+在[1,e]上的最小值[h(x)]min≤0,利用第(Ⅱ)問的結(jié)果,通過①a≥e﹣1時,②a≤0時,③0<a<e﹣1時,分別求解函數(shù)的最小值,推出所求a的范圍.
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+1|(x∈R)
(1)證明:函數(shù)f(x)是偶函數(shù);
(2)利用絕對值及分段函數(shù)知識,將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖象,并寫出函數(shù)的值域;
(3)在同一坐標(biāo)系中畫出直線y=x+2,觀察圖象寫出不等式f(x)>x+2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大。
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時角A,B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為正方形BCC1B1的中心.
(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[﹣]
B.(﹣ ,
C.(﹣∞,﹣)∪( , +∞)
D.(﹣∞,﹣)∩( , +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔選手參加“中國謎語大會”,某中學(xué)舉行了一次“謎語大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照, , , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

(Ⅰ)求樣本容量和頻率分布直方圖中的、的值;

(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取3

名學(xué)生參加“中國謎語大會”,設(shè)隨機(jī)變量表示所抽取的3名學(xué)生中得分在內(nèi)的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為空集;命題乙:方程x2+ ax﹣(a﹣4)=0有兩個不相等的實(shí)根.
(1)若甲,乙都是真命題,求實(shí)數(shù)a的取值范圍;
(2)若甲,乙中有且只有一個是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 , 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點(diǎn),且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實(shí)數(shù),p:點(diǎn)M(1,1)在圓(x+a)2+(y﹣a)2=4的內(nèi)部; q:x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案