9.若向量$\overrightarrow{AB}$=(2,3)向右平移1個(gè)單位,再向下平移2個(gè)單位得到向量$\overrightarrow{A′B′}$,則$\overrightarrow{A′B′}$為( 。
A.(3,1)B.(1,1)C.(3,5)D.(2,3)

分析 根據(jù)平面向量平移時(shí),向量的模不變,方向也不變,故向量的坐標(biāo)不變.

解答 解:向量$\overrightarrow{AB}$=(2,3)向右平移1個(gè)單位,
再向下平移2個(gè)單位,向量的模不變,方向也不變,
∴向量的坐不變,即向量$\overrightarrow{A′B′}$=(2,3).
故選:D.

點(diǎn)評(píng) 本題考查了平面向量自由平移問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$y=2sin({\frac{π}{2}x-\frac{π}{3}})({0≤x≤3})$的最大值與最小值之和為( 。
A.$2-\sqrt{3}$B.0C.-1D.$-1-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直角三角形ABC,三內(nèi)角成等差數(shù)列,最短邊的邊長(zhǎng)為m(m>0),P是△ABC內(nèi)一點(diǎn),并且∠APB=∠APC=∠BPC=120°,則PA+PB+PC=$\sqrt{21}$時(shí),m的值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.過(guò)點(diǎn)P(3,3)向圓O:x2+y2=4作兩條切線PA,PB,求:
(1)線段PA的長(zhǎng).
(2)弦AB所在的直線方程.
(3)問(wèn)是否存在過(guò)點(diǎn)P的直線L交圓O于M,N兩點(diǎn),使得點(diǎn)M是線段PN的中點(diǎn),若存在,求出直線L的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系中,已知A={(x,y)|x+y≤1,x≥0,y≥0},求B={(x+y,x-y)|(x,y)∈A}所表示的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算:${C}_{8}^{1}$+${C}_{8}^{2}$+${C}_{8}^{3}$+${C}_{8}^{4}$+${C}_{8}^{5}$+${C}_{8}^{6}$+${C}_{8}^{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知F1,F(xiàn)2為雙曲線C:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn),點(diǎn)M是雙曲線C左支上的一點(diǎn),直線MF2垂直雙曲線的一條漸近線于點(diǎn)N,且N為線段MF2的中點(diǎn),則b=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$,n=1,2,3,…
(1)求證:{an+2n}是等比數(shù)列;
(2)設(shè)Tn=$\frac{{2}^{n}}{{S}_{n}}$,n=1,2,3…證明:$\sum_{i=1}^{n}$Ti<$\frac{3}{2}$(其中$\sum_{i=1}^{n}$Ti=T1+T2+…+Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知角θ終邊過(guò)(1,2),則sin2θ-tan2θ=(  )
A.$\frac{1}{2}$B.0C.$\frac{32}{15}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案