18.復(fù)數(shù)$\frac{2i}{1+i}$的共軛復(fù)數(shù)是( 。
A.-1-iB.-1+iC.1-iD.1+i

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)$\frac{2i}{1+i}$,則其共軛復(fù)數(shù)可求.

解答 解:$\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1-i)(1+i)}$=1+i,
其共軛復(fù)數(shù)為1-i.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=ax+1的反函數(shù)經(jīng)過(3,1),則f(2)=( 。
A.1B.3C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.想一想函數(shù)y=sin(x-$\frac{3π}{2}$)和y=cosx的圖象,并在同一直角坐標(biāo)系中,畫出它們的草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的實(shí)軸長為2,離心率為$\sqrt{5}$,則它的一個(gè)焦點(diǎn)到它的一條漸近線的距離為( 。
A.1B.2C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且a2-$\sqrt{3}$ab+b2=1,c=1,則$\sqrt{3}$a-b的取值范圍為$(1,\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f (x)=ex+4x-kx在區(qū)間($\frac{1}{2}$,+∞)上是增函數(shù),則實(shí)數(shù)k的最大值是(  )
A.2+eB.2+$\sqrt{e}$C.4+eD.4ln2+$\sqrt{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的菱形,∠ADC=60°,PC⊥底面AC,PC=1,E為PA的中點(diǎn).
(1)求證:平面DBE⊥平面ABCD;
(2)求點(diǎn)E到平面BPC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=\sqrt{3}t\\ y={t^2}+1\end{array}\right.$(t為參數(shù)),點(diǎn)M(3,a)在曲線C上,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y≤6}\\{2x+y≤6}\\{x≥0,y≥0}\end{array}\right.$,則max{2x+3y-1,x+2y+2}的最大值為( 。
A.2B.5C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案