10.已知f(x)=ax+1的反函數(shù)經(jīng)過(3,1),則f(2)=(  )
A.1B.3C.5D.9

分析 直接利用函數(shù)與反函數(shù)的關(guān)系求出a,然后求解函數(shù)值即可.

解答 解:f(x)=ax+1的反函數(shù)經(jīng)過(3,1),
可得3=a1+1,解得a=2,
f(x)=2x+1,
則f(2)=22+1=5.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)與反函數(shù)的關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在多面體ABCDEF中,平面ADEF⊥平面ABCD,AB∥DC,ADEF是正方形,已知BD=2AD=2,AB=2DC=$\sqrt{5}$.
(1)證明:平面BDF⊥平面ADEF;
(2)求二面角D-BE-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,某快遞公司送貨員從公司A處準(zhǔn)備開車送貨到某單位B處,有A→C→D→B,A→E→F→B兩條路線.若該地各路段發(fā)生堵車與否是相互獨(dú)立的,且各路段發(fā)生堵車事件的概率如圖所示(例如A→C→D算作兩個(gè)路段;路段AC發(fā)生堵車事件的概率為$\frac{1}{6}$,路段CD發(fā)生堵車事件的概率為$\frac{1}{10}$).
(Ⅰ)請(qǐng)你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率較;
(Ⅱ)若記路線A→E→F→B中遇到堵車路段的個(gè)數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線ax+by+c=0在x,y軸上的截距分別是-3和4,則直線方程為4x-3y+12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的各項(xiàng)互不相等,前兩項(xiàng)的和為10,設(shè)向量$\overrightarrow{m}$=(a1,a3),$\overrightarrow{n}$=(a3,a7),且$\overrightarrow{m}∥\overrightarrow{n}$;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=($\sqrt{2}$)${\;}^{{a}_{n}-2}$,n∈N*,求數(shù)列{$\frac{1}{{_{n}}^{2}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“△”;a△b=(a-b)2,已知實(shí)數(shù)x1,x2滿足y=$\sqrt{({x}_{1}△{x}_{2})+({x}_{1}+\frac{1}{{x}_{1}})△\sqrt{1-{{x}_{2}}^{2}}}$,則y的最小值為$\sqrt{2\sqrt{2}+2}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)的值域:y=sin2x-sinx+1,x∈[$\frac{π}{3},\frac{3π}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=9,AB=BC=6$\sqrt{3}$,N,M,P分別為BC,A1B1,C1D1的中點(diǎn).
(1)求點(diǎn)P到平面B1MN的距離;
(2)求PC與平面B1MN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)$\frac{2i}{1+i}$的共軛復(fù)數(shù)是(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

同步練習(xí)冊(cè)答案