是否存在角α、β,α∈(-
π
2
,
π
2
),β∈(0,π),使等式sin(3π-α)=
2
cos(
π
2
-β),
3
sin(
2
+α)=-
2
cos(π+β)同時成立?若存在,求出α、β的值;若不存在,說明理由.
考點:兩角和與差的余弦函數(shù)
專題:計算題,存在型,三角函數(shù)的求值
分析:首先由誘導(dǎo)公式簡化已知條件并列方程組,再利用公式sin2β+cos2β=1解方程組,最后根據(jù)特殊角三角函數(shù)值求出滿足要求的α、β.
解答: 答:存在滿足要求的α、β.
解:由條件得sinα=
2
sinβ①,
3
cosα=
2
cosβ②,
2+②2得sin2α+3cos2α=2,∴cos2α=
1
2
即cosα=±
2
2

∵α∈(-
π
2
,
π
2
),
∴α=
π
4
或α=-
π
4

將α=
π
4
代入②得cosβ=
3
2
.又β∈(0,π),
∴β=
π
6
,代入①可知,符合.
將α=-
π
4
代入②得β=
π
6
,代入①可知,不符合.
綜上可知α=
π
4
,β=
π
6
點評:本題綜合考查誘導(dǎo)公式、同角正余弦關(guān)系式及特殊角三角函數(shù)值.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)2ex,g(x)=x3-x2-3,其中a∈R.
(1)當(dāng)a=0時,求曲線y=f(x)在點P(1,f(1))處的切線方程;
(2)若存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求實數(shù)M的最大值;
(3)若對任意的s,t∈[0,2],都有f(s)≥g(t),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知α的終邊所在直線上的一點P的坐標(biāo)為(-3,4),β的終邊在第一象限且與單位圓的交點Q的縱坐標(biāo)為
2
10

(1)求tan(α-β)的值;
(2)若
π
2
<α<π,0<β<
π
2
,求α+β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩條平行直線分別在兩個相交平面內(nèi),證明:這兩條直線都與兩平面的交線平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:i+2i2+3i3+…+2014i2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosx+siny=
1
3
,x,y∈R.
(1)若cosx•siny>0,求
2siny+cosx
cosxsiny
的最小值;
(2)設(shè)t=sin2x-siny,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+px+p=0在[0,2]上至少有一實根,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:2x3-3x2+1=0.

查看答案和解析>>

同步練習(xí)冊答案