15.已知a,b為正實(shí)數(shù),直線x+y+a=0與圓(x-b)2+(y-1)2=2相切,則$\frac{(3-2b)^{2}}{2a}$的最小值是(  )
A.2B.4C.6D.8

分析 由圓心到直線的距離等于圓的半徑得到a+b=1,則b=1-a,進(jìn)一步得到0<a<1,代入$\frac{(3-2b)^{2}}{2a}$,化為關(guān)于a的函數(shù)式,然后利用基本不等式求最值.

解答 解:圓(x-b)2+(y-1)2=2的圓心坐標(biāo)為(b,1),半徑為$\sqrt{2}$,
∵直線x+y+a=0與圓(x-b)2+(y-1)2=2相切,
∴$\frac{|b+1+a|}{\sqrt{2}}=\sqrt{2}$,則|a+b+1|=2,
又a>0,b>0,
∴a+b=1,則b=1-a,且0<a<1,
則$\frac{(3-2b)^{2}}{2a}$=$\frac{(1+2a)^{2}}{2a}=\frac{1+4a+4{a}^{2}}{2a}=2a+\frac{1}{2a}+2$$≥2\sqrt{2a•\frac{1}{2a}}+2=4$.
當(dāng)且僅當(dāng)$2a=\frac{1}{2a}$,即a=$\frac{1}{2}$時(shí)上式等號(hào)成立.
故選:B.

點(diǎn)評(píng) 本題考查圓的切線方程,考查了點(diǎn)到直線距離公式的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)$y=sin(ωx+φ)(ω>0,|φ|≤\frac{π}{2})$的圖象沿x軸方向向左平移$\frac{π}{3}$個(gè)單位,所得曲線的一部分圖象如圖,則ω,φ的值分別為( 。
A.1,$\frac{π}{3}$B.1,$-\frac{π}{3}$C.2,$\frac{π}{3}$D.2,$-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}x,|x|≤1\\ sin\frac{π}{2}x,|x|>1\end{array}\right.$則下列結(jié)論正確的是(  )
A.函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增B.函數(shù)f(x)的值域是[-1,1]
C.?x0∈R,f(-x0)≠-f(x0D.?x∈R,f(-x)≠f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.冪函數(shù)y=xa在x=1處切線方程為y=-4x,則a的值為( 。
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知△ABC中,A=45°,B=60°,$b=\sqrt{3}$,那么a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四邊形OQRP為矩形,其中P,Q分別是函數(shù)f(x)=$\sqrt{3}$sinwx(A>0,w>0)圖象上的一個(gè)最高點(diǎn)和最低點(diǎn),O為坐標(biāo)原點(diǎn),R為圖象與x軸的交點(diǎn).
(1)求f(x)的解析式
(2)對(duì)于x∈[0,3],方程f2(x)-af(x)+1=0恒有四個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.分別寫出下列函數(shù):y=log2x,x∈[$\frac{1}{2}$,4],y=cosx,x∈[-$\frac{π}{3}$,$\frac{π}{2}$]的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),過點(diǎn)F作雙曲線的一條漸近線的垂線,垂足為A,交另一條漸近線于點(diǎn)B.若3$\overrightarrow{FA}$=$\overrightarrow{FB}$,則此雙曲線的離心率為( 。
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線(2+λ)x-(1-2λ)y-(6+3λ)=0所經(jīng)過的定點(diǎn)F恰好是橢圓C的一個(gè)焦點(diǎn),且橢圓C上點(diǎn)到點(diǎn)F的最小距離為2.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知圓O:x2+y2=1,直線l:mx+ny=1,試證明:當(dāng)點(diǎn)P(m,n)在橢圓C上運(yùn)動(dòng)時(shí),直線l與圓C恒相交,并求直線l被圓O所截得的弦長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案