分析 (1)利用中位線定理可得PQ∥DE∥MN,故PQ∥MN,于是四點(diǎn)共面;
(2)利用折疊前后的垂直關(guān)系不變性可得出DE⊥平面ADC,又DE∥BC,故而BC⊥平面DAC,于是平面ABC⊥平面ACD;
(3)四棱錐的底面為直角梯形,高為AD,代入公式計(jì)算即可.
解答 證明:(1)∵CD,BE,AE,AD的中點(diǎn)分別為M,N,P,Q,
∴PQ∥DE,MN∥DE,
∴PQ∥MN,
∴M,N,P,Q四點(diǎn)共面.
(2)∵折疊前DE是△ABC的中位線,∴DE∥BC,
∵BC⊥AB,∴DE⊥AB.
∴折疊后DE⊥AD,DE⊥CD,
又折疊后AD?平面ADC,CD?平面ADC,AD∩CD=D,
∴DE⊥平面ADC,又∵DE∥BC,
∴BC⊥平面DAC,∵BC?平面ABC,
∴平面ABC⊥平面ACD.
(3)∵平面ADE⊥平面BCDE,平面ADE∩平面BCDE=DE,AD⊥DE,
∴AD⊥平面BCDE,
∵DE∥BC,DE=$\frac{1}{2}BC=1$,AD=CD=$\frac{1}{2}AC$=1,
∴四棱錐A-BCDE的體積V=$\frac{1}{3}×\frac{1}{2}×(1+2)×1×1$=$\frac{1}{2}$.
點(diǎn)評 本題考查了平面的基本性質(zhì),面面垂直的性質(zhì)與判定,棱錐的體積計(jì)算,注意折疊前后的變量與不變量是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 0 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | l∥m且l⊥平面α | B. | l⊥m且l∥平面α | C. | l⊥m且l⊥平面α | D. | l∥m且l∥平面α |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com