分析 由等軸雙曲線的離心率為$\sqrt{2}$,即有橢圓的離心率為$\frac{\sqrt{2}}{2}$,討論橢圓的焦點的位置,結(jié)合離心率公式,解方程可得m的值.
解答 解:等軸雙曲線的離心率為$\sqrt{2}$,
即有橢圓的離心率為$\frac{\sqrt{2}}{2}$,
若橢圓的焦點在x軸上,則a2=2,b2=m2,c2=2-m2,
即有e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{2-{m}^{2}}{2}$=$\frac{1}{2}$,解得m=1;
若橢圓的焦點在y軸上,則b2=2,a2=m2,c2=m2-2,
即有e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{m}^{2}-2}{{m}^{2}}$=$\frac{1}{2}$,解得m=2.
綜上可得m=1或2.
故答案為:1或2.
點評 本題考查橢圓和雙曲線的性質(zhì),主要考查離心率的運用,以及橢圓的焦點的確定,考查運算能力,屬于基礎(chǔ)題和易錯題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱,g(x)圖象關(guān)于原點對稱 | |
B. | f(x)的圖象關(guān)于點($\frac{π}{4}$,0)對稱,g(x)圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
C. | f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對稱,g(x)圖象關(guān)于原點對稱 | |
D. | f(x)的圖象關(guān)于點($\frac{5π}{12}$,0)對稱,g(x)圖象關(guān)于直線x=$\frac{π}{6}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${(\frac{1}{e})^a}<{(\frac{1}{e})^b}$ | B. | 3b<3a | C. | (lga)2<(lgb)2 | D. | loga3>logb3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2,4} | C. | {-1,1,2,4} | D. | {2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x3>y3 | B. | x2>y2 | C. | ln(x2+1)>ln(y2+1) | D. | $\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 以|QF|為直徑的圓與以|AA′|為直徑的圓內(nèi)切 | |
B. | 以|QF′|為直徑的圓與以|AA′|為直徑的圓相交 | |
C. | 以|QF|為直徑的圓與以|AA′|為直徑的圓相交 | |
D. | 以|QF|為直徑的圓與以|QF′|為直徑的圓相切 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com