15.從甲、乙、丙三名學(xué)生中任意安排2名學(xué)生參加數(shù)學(xué)、外語兩個課外活動小組的活動,畫出相應(yīng)的樹型圖,計算有多少種不同的安排方案.

分析 畫出樹形圖,并由樹形圖可知結(jié)論.

解答 解:樹形圖如圖所示:

由樹形圖可知,共有6種不同的安排方案.

點評 本題考查了利用樹形圖來解決方案設(shè)計的問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.從裝有2個紅球,2個白球和1個黑球的袋中逐一取球,已知每個球被抽到的可能性相同,若抽取的不放回,設(shè)取完紅球所需的次數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若x∈{1,2,3},y∈{3,6},則xy的不同值有( 。
A.3個B.5個C.6個D.9個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將4位老師分配到3個學(xué)校去任教,共有分配方案( 。
A.81種B.12種C.7種D.256種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(c)=(c-a)(c-b),其中a+b=1-c且c≥0,a≥0,b≥0.則f(c)的取值范圍為( 。
A.[-$\frac{1}{8}$,1]B.[0,1]C.[0,$\frac{1}{4}$]D.[-$\frac{1}{9}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求直線$\left\{\begin{array}{l}{x=-1+3t}\\{y=2-4t}\end{array}\right.$的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.有一個綜藝節(jié)目,選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂,選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金,某機(jī)構(gòu)隨機(jī)抽取50個參與節(jié)目的選手的年齡作為樣本進(jìn)行分析研究,由此得到如下頻數(shù)分布表(所有參與節(jié)目的選手年齡都在[5,65)內(nèi)).
選手年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
 頻數(shù) 2 12 16 10 73
(Ⅰ)在表中作出這些數(shù)據(jù)的頻率分布直方圖;

(Ⅱ)若將頻率視為概率,從參與節(jié)目的選手中隨機(jī)抽取3位(看作有放回地抽。竽挲g在[35,45)內(nèi)的選手人數(shù)X的分布列、數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,且∠DAB=60°,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,G為AD邊的中點,E為BC所在直線上的一點
(1)求證:平面PAD⊥平面PGB;
(2)記$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,當(dāng)平面PDC和平面PGE所成的二面角的余弦值為$\frac{\sqrt{5}}{5}$時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.?dāng)?shù)列{an}的通項an=n2cos$\frac{2nπ}{3}$,其前n項和為Sn,則S60為( 。
A.1840B.1860C.1880D.2010

查看答案和解析>>

同步練習(xí)冊答案