分析 由題意知X的可能取值為2,3,4,5,分別求出相應在的概率,由此能求出X的分布列和數(shù)學期望.
解答 解:由題意知X的可能取值為2,3,4,5,
P(X=2)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,
P(X=3)=$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}•\frac{1}{3}$=$\frac{1}{5}$,
P(X=4)=$\frac{{C}_{2}^{1}{C}_{3}^{2}}{{C}_{5}^{3}}•\frac{1}{2}$=$\frac{3}{10}$,
P(X=5)=$\frac{{C}_{2}^{1}{C}_{3}^{3}}{{C}_{5}^{4}}•\frac{1}{1}$=$\frac{2}{5}$.
∴X的分布列為:
X | 2 | 3 | 4 | 5 |
P | $\frac{1}{10}$ | $\frac{1}{5}$ | $\frac{3}{10}$ | $\frac{2}{5}$ |
點評 本題考查離散型隨機變量的分布列、數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=g(x)是奇函數(shù) | B. | y=g(x)的圖象關于點(-$\frac{π}{2}$,0)對稱 | ||
C. | y=g(x)的圖象關于直線x=$\frac{π}{2}$對稱 | D. | y=g(x)的周期為π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{12}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com