3.已知函數(shù)f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的圖象的對(duì)稱軸完全相同,若x∈[0,$\frac{π}{2}$],則f(x)的取值范圍是( 。
A.[-3,3]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]D.[-$\frac{3}{2}$,3]

分析 先根據(jù)函數(shù)f(x)=3sin(ωx-$\frac{π}{6}$)和g(x)=2cos(2x+φ)+1的圖象的對(duì)稱軸完全相同確定ω的值,再由x的范圍確定ωx-$\frac{π}{6}$的范圍,最后根據(jù)正弦函數(shù)的圖象和性質(zhì)可得到答案

解答 解:由題意可得ω=2,∵x∈[0,$\frac{π}{2}$],∴ωx-$\frac{π}{6}$=2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
由三角函數(shù)圖象知:
f(x)的最小值為3sin(-$\frac{π}{6}$)=-$\frac{3}{2}$,最大值為3sin$\frac{π}{2}$=3,
所以f(x)的取值范圍是[-$\frac{3}{2}$,3],
故選:D

點(diǎn)評(píng) 本題考查三角函數(shù)的圖象與性質(zhì),考查了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x}-1,x≥0}\\{2cosx-1,-2π≤x<0}\end{array}\right.$的所有零點(diǎn)的和等于(  )
A.1-2πB.1-$\frac{3π}{2}$C.1-πD.1-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖在邊長(zhǎng)為1的正方形網(wǎng)格中用粗線畫出了某個(gè)多面體的三視圖,則該多面體的表面積為8+12$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x•lnx2,g(x)=$\left\{\begin{array}{l}{{e}^{x}-{e}^{-x},x>0}\\{{e}^{-x}-{e}^{x},x<0}\end{array}\right.$則下列命題正確的是( 。
A.f(x)是奇函數(shù),g(x)是奇函數(shù)B.f(x)是偶函數(shù),g(x)是奇函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù)D.f(x)是偶函數(shù),g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在菱形ABCD中,AB=2,∠BAD=60°,沿對(duì)角線BD將△ABD折起,使A,C之間的距離為$\sqrt{6}$,若P,Q分別為線段BD,CA上的動(dòng)點(diǎn).

(1)求線段PQ長(zhǎng)度的最小值;
(2)當(dāng)線段PQ長(zhǎng)度最小時(shí),求直線PQ與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.化簡(jiǎn):cos2A+cos2($\frac{2π}{3}$+A)+cos2($\frac{4π}{3}$+A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)化C1,C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3:ρ(cosθ-2sinθ)=7距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$則z=2|x|+y的取值范圍是( 。
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=2ln(x+1)+$\frac{x^2}{x+1}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對(duì)所有的x≥0,都有f(x)≤ax,求a的最小值;
(Ⅲ)已知數(shù)列{an}中,a1=1,且(1-an+1)(1+an)=1,若數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn>$\frac{{{a_{n+1}}}}{{2{a_n}}}-ln{a_{n+1}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案