A. | 2$\sqrt{2}$ | B. | $\frac{14}{3}$ | C. | $\frac{9}{2}$ | D. | 5 |
分析 由$\frac{1}{4}$≤x≤$\frac{1}{2}$,可得1-x>0,則f(x)=$\frac{1}{2x}$+$\frac{2}{1-x}$=[x+(1-x)]($\frac{\frac{1}{2}}{x}$+$\frac{2}{1-x}$),展開后,運用基本不等式,即可得到所求最小值.
解答 解:由$\frac{1}{4}$≤x≤$\frac{1}{2}$,可得1-x>0,
f(x)=$\frac{1}{2x}$+$\frac{2}{1-x}$
=[x+(1-x)]($\frac{\frac{1}{2}}{x}$+$\frac{2}{1-x}$)
=$\frac{1}{2}$+2+$\frac{2x}{1-x}$+$\frac{\frac{1}{2}(1-x)}{x}$
≥$\frac{5}{2}$+2$\sqrt{\frac{2x}{1-x}•\frac{1-x}{2x}}$=$\frac{5}{2}$+2=$\frac{9}{2}$,
當且僅當2x=1-x,即為x=$\frac{1}{3}$,可得最小值為$\frac{9}{2}$.
故選:C.
點評 本題考查函數(shù)的最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,考查運算能力,屬于中檔題和易錯題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com