分析 連接OP交平面ABC于O′,由題意可得:O′A=$\frac{\sqrt{3}}{3}$AB=$\frac{\sqrt{3}}{3}$AP.由AO′⊥PO,OA⊥PA可得$\frac{OP}{OA}=\frac{AP}{AO′}$,根據(jù)球的體積可得半徑OA=3,進(jìn)而求出答案.
解答 解:連接OP交平面ABC于O′,
由題意可得:△ABC和△PAB為正三角形,
∴O′A=$\frac{\sqrt{3}}{3}$AB=$\frac{\sqrt{3}}{3}$AP.
∵AO′⊥PO,OA⊥PA,
∴$\frac{OP}{OA}=\frac{AP}{AO′}$,
∴OP=OA•$\frac{AP}{AO′}$=$\sqrt{3}$OA.
又∵球的體積為36π,
∴半徑OA=3,則OP=3$\sqrt{3}$.
故答案為:3$\sqrt{3}$.
點(diǎn)評(píng) 本題考查空間中兩點(diǎn)之間的距離,解決此類問題的方法是熟練掌握幾何體的結(jié)構(gòu)特征,考查計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x3 | B. | y=|x|+1 | C. | y=-x2+1 | D. | y=2-|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $12\sqrt{3}$ | B. | $3\sqrt{39}$ | C. | 18 | D. | $\frac{{4\sqrt{3}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\frac{14}{3}$ | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com