7.若存在實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y-2>0}\\{m(x+1)-y=0}\\{\;}\end{array}\right.$,則實數(shù)m的取值范圍是( 。
A.(0,$\frac{2}{7}$)B.($\frac{2}{7}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{4}{5}$)D.($\frac{2}{7}$,$\frac{4}{5}$)

分析 作出平面區(qū)域,可得直線過定點D(-1,0),斜率為-m,結(jié)合圖象可得m的不等式組,解不等式組可得.

解答 解:作出$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y-2>0}\end{array}\right.$所對應(yīng)的區(qū)域(如圖△ABC即內(nèi)部,不包括邊界),
直線m(x+1)-y=0,可化為y=m(x+1),過定點D(-1,0),斜率為m,
存在實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y-2>0}\\{m(x+1)-y=0}\\{\;}\end{array}\right.$,
則直線需與區(qū)域有公共點,$\left\{\begin{array}{l}{x+y-2=0}\\{2x-y-2=0}\end{array}\right.$,
解得B($\frac{4}{3}$,$\frac{2}{3}$),$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+2=0}\end{array}\right.$,解得A($\frac{2}{3}$,$\frac{4}{3}$)
KDA=$\frac{\frac{4}{3}}{\frac{2}{3}+1}$=$\frac{4}{5}$,KDB=$\frac{\frac{2}{3}}{\frac{4}{3}+1}$=$\frac{2}{7}$,
∴$\frac{2}{7}$<m<$\frac{4}{5}$
故選:D.

點評 本題考查簡單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,考查數(shù)形結(jié)合,轉(zhuǎn)化思想的應(yīng)用,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P在第一象限內(nèi),且是以F1F2為直徑的圓與雙曲線的一個交點,延長PF2,與雙曲線交于點Q.若|PF1|=|QF2|,則直線PF2的斜率為(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后所得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,則圓錐的母線長為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)正三角形ABC的外接圓內(nèi)隨機取一點,則此點落在正三角形ABC內(nèi)的概率為$\frac{{3\sqrt{3}}}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.二次函數(shù)y=ax2-4x+1的最小值是-1,則其頂點坐標(biāo)是(1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)命題甲:關(guān)于x的式x2+2ax+1>0對一切x∈R恒成立,命題乙:對數(shù)函=log(4-2a)x在(0,+∞)上遞減,那么甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}x,x>0\\{2^x}\;\;,x≤0\end{array}\right.$,則$f(f(\frac{1}{25}))$=(  )
A.4B.$\frac{1}{4}$C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow$=(cosωx-sinωx,2sinωx)(ω>0),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的相鄰兩對稱軸間的距離等于$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C所對的邊,且f(A)=1,$a=\sqrt{3}$,b+c=3.求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面上有直線L:y=2x,曲線C:y=$\frac{1}{2}$x3.又有下列方式定義數(shù)列{an}:
(1)a1=$\frac{1}{2}$;
(2)當(dāng)給定an后,作過點(an,0)且與y軸平行的直線,它與l的交點記為Pn,再過點Pn且與x軸平行的直線,它與C的交點記為Qn,定義an+1為Qn的橫坐標(biāo).試求數(shù)列{an}的通項.

查看答案和解析>>

同步練習(xí)冊答案