2.二次函數(shù)y=ax2-4x+1的最小值是-1,則其頂點(diǎn)坐標(biāo)是(1,-1).

分析 根據(jù)題意:二次函數(shù)y=ax2-4x+1的最小值是-1,則判斷二次函數(shù)的系數(shù)大于0,再根據(jù)公式y(tǒng)最小值=$\frac{4ac{-b}^{2}}{4a}$列出關(guān)于a的一元二次方程,解得a的值即可.

解答 解:∵二次函數(shù)y=ax2-4x+1有最小值-1,
∴a>0,
y最小值=$\frac{4a-16}{4a}$=-1,
解得a=2,
∴-$\frac{2a}$=-$\frac{-4}{2×2}$=1,
故頂點(diǎn)坐標(biāo)是(1,-1),
故答案為:(1,-1).

點(diǎn)評(píng) 本題主要考查二次函數(shù)的最值的知識(shí)點(diǎn),求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對(duì)值是較小的整數(shù)時(shí),用配方法較好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心,兩坐標(biāo)軸為對(duì)稱(chēng)軸的雙曲線C的一條漸近線的斜率為$\sqrt{3}$,則雙曲線C的離心率為( 。
A.2或$\sqrt{3}$B.2或$\frac{2\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=-$\frac{1}{2}$x2+x+m的最大值是3m-$\frac{1}{2}$,則m的值是( 。
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=Acos(ωx+φ)在區(qū)間[0,π]上的圖象如圖所示,則函數(shù)f(x)的解析式可能是(  )
A.f(x)=2cos(2x+$\frac{π}{4}$)B.f(x)=-$\sqrt{2}$cos(x-$\frac{π}{4}$)C.f(x)=-$\sqrt{2}$cos(2x-$\frac{3π}{4}$)D.f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在?ABCD中,AB=2AD=4,∠BAD=60°,E為BC的中點(diǎn),則$\overrightarrow{BD}$•$\overrightarrow{AE}$=(  )
A.6B.12C.-6D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若存在實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y-2>0}\\{m(x+1)-y=0}\\{\;}\end{array}\right.$,則實(shí)數(shù)m的取值范圍是( 。
A.(0,$\frac{2}{7}$)B.($\frac{2}{7}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{4}{5}$)D.($\frac{2}{7}$,$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)Z滿足(1+i)Z=|3+4i|,則Z的實(shí)部為(  )
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,AB=2,BC=$\sqrt{10}$,AC=3.
(1)求$\overrightarrow{AB}•\overrightarrow{AC}$的值;
(2)若O是△ABC外心,求$\overrightarrow{AO}•\overrightarrow{BC}$的值
(3)若O為△ABC外心,$\overrightarrow{AO}=p\overrightarrow{AB}+q\overrightarrow{AC}$,求p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.命題“?x0∈R,x${\;}_{0}^{2}=1$”的否定形式是( 。
A.?x0∈R,x${\;}_{0}^{2}≠1$B.?x0∈R,x${\;}_{0}^{2}>1$C.?x∈R,x2=1D.?x∈R,x2≠1

查看答案和解析>>

同步練習(xí)冊(cè)答案