7.在極坐標(biāo)系中,已知直線$l:ρsin(θ+\frac{π}{4})=2$與圓O:ρ=4.
(1)分別求出直線l與圓O對(duì)應(yīng)的直角坐標(biāo)系中的方程;
(2)求直線l被圓O所截得的弦長(zhǎng).

分析 (1)先利用三角函數(shù)的和角公式展開(kāi)直線的極坐標(biāo)方程的左式,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得直角坐標(biāo)方程,
(2)利用直角坐標(biāo)中直線與圓的關(guān)系求出截得的弦長(zhǎng)即可.

解答 解:(1)∵ρsin(θ+$\frac{π}{4}$)=2,
∴ρsinθ+ρcosθ=2$\sqrt{2}$,
∵ρcosθ=x,ρsinθ=y,
∴化成直角坐標(biāo)方程為:x+y-2$\sqrt{2}$=0,
圓ρ=4化成直角坐標(biāo)方程為x2+y2=16,
(2)圓心到直線的距離為:d=$\frac{|\frac{\sqrt{2}}{2}×0+\frac{\sqrt{2}}{2}×0-2|}{\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}}}$=2,
∴截得的弦長(zhǎng)為:2$\sqrt{{4}^{2}-{2}^{2}}$=4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.i是虛數(shù)單位,復(fù)數(shù)$\frac{1+i}{1-i}$=(  )
A.-iB.iC.$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,點(diǎn)A、B分別是角α、β的終邊與單位圓的交點(diǎn),且0<β<$\frac{π}{2}$<α<π.
(1)試用向量知識(shí)證明:cos(α-β)=cosαcosβ+sinαsinβ;
(2)若α=$\frac{3π}{4}$,cos(α-β)=$\frac{1}{3}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓M的圓心在x軸上,圓M與直線y+2=0相切,且被直線x-y+2=0截得的弦長(zhǎng)為2$\sqrt{2}$.
(1)求圓M的方程;
(2)已知F($\sqrt{3}$,0),圓M在第一象限上的點(diǎn)P在x軸上的射影為Q,E為PQ中點(diǎn),過(guò)E引圓x2+y2=1的切線,并延長(zhǎng)交圓M于點(diǎn)N,證明:|EF|+|EN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-4x,\;x≥0\\{x^2}-4x,\;\;\;x<0\end{array}\right.$,若f(a-2)+f(a)>0,則實(shí)數(shù)a的取值范圍是( 。
A.$a<-1-\sqrt{3\;}或\;a>-1+\sqrt{3}$B.a>1
C.$a<3-\sqrt{3\;}或\;a>3+\sqrt{3}$D.a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如果一個(gè)幾何體的三視圖如圖所示,求此幾何體的體積是(  )
A.12B.16C.32D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.一個(gè)幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為13π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)減區(qū)間;
(3)當(dāng)y取得最大值時(shí),求自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)x0是方程2x+x-8=0的解,且x0∈(k,k+1),k∈Z,則k=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案