【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.

1)寫出曲線的普通方程和直線的直角坐標方程;

2)若直線與曲線相交于、兩點,求的面積.

【答案】1,;(2.

【解析】

1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將直線的極坐標方程化簡為,由可將直線的極坐標方程化為直角坐標方程;

2)計算出圓心到直線的距離,利用勾股定理計算出,并計算出原點到直線的距離,進而利用三角形的面積公式可求得的面積.

1)由,得,

故曲線的普通方程是.

,得

,得,

代入公式.

故直線的直角坐標方程是;

2)因為原點到直線的距離為,

曲線表示圓心為,半徑的圓.

到直線的距離,所以.

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題,其中正確命題的個數(shù)為(

①命題,使得的否定是,均有;

②若正整數(shù)滿足,則

③在 ,的充要條件;

④一條光線經(jīng)過點,射在直線上,反射后穿過點,則入射光線所在直線的方程為;

⑤已知的三個零點分別為一橢圓、一雙曲線、一拋物線的離心率,則為定值.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖1,在RtABC中,∠ACB=30°,∠ABC=90°,DAC中點,AEBDE,延長AEBCF,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示。

(Ⅰ)求證:AE平面BCD;

(Ⅱ)求二面角A-DC-B的余弦值;

(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結果,不要求過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分配名工人去個不同的居民家里檢查管道,要求名工人都分配出去,并且每名工人只去一個居民家,且每個居民家都要有人去檢查,那么分配的方案共有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為2.

1)求拋物線的方程;

2)若過點作互相垂直的兩條直線,與拋物線交于,兩點,與拋物線交于,兩點,,分別為弦,的中點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的定義域;

2)判斷的奇偶性并予以證明;

3)求滿足的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程有兩個不同的實數(shù)解,則b的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于非負整數(shù)集合(非空),若對任意,或者,或者,則稱個好集合.以下記的元素個數(shù).

1)給出所有的元素均小于的好集合.(給出結論即可)

2)求出所有滿足的好集合.(同時說明理由)

3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的焦距為2,左頂點與上頂點連線的斜率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)過點Pm,0)作圓x2+y21的一條切線l交橢圓CM,N兩點,當|MN|的值最大時,求m的值.

查看答案和解析>>

同步練習冊答案