【題目】對于非負(fù)整數(shù)集合(非空),若對任意,或者,或者,則稱個(gè)好集合.以下記的元素個(gè)數(shù).

1)給出所有的元素均小于的好集合.(給出結(jié)論即可)

2)求出所有滿足的好集合.(同時(shí)說明理由)

3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.

【答案】1,,.(2;證明見解析.(3)證明見解析.

【解析】

1)根據(jù)好集合的定義列舉即可得到結(jié)果;

2)設(shè),其中,由;由可知,分別討論兩種情況可的結(jié)果;

3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.

1,

2)設(shè),其中

則由題意:,故,即,

考慮,可知:,

,則考慮

,,則

,但此時(shí),,不滿足題意;

,此時(shí),滿足題意,

,其中為相異正整數(shù).

3)記,則,

首先,,設(shè),其中,

分別考慮和其他任一元素,由題意可得:也在中,

,

,

對于,考慮,,其和大于,故其差,

特別的,,

,且,,

以此類推:,

,此時(shí),

中存在元素,使得中所有元素均為的整數(shù)倍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(1)若,求曲線的直角坐標(biāo)方程以及直線的極坐標(biāo)方程;

(2)設(shè)點(diǎn),曲線與直線交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

2)若直線與曲線相交于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋子中有紅、黃、藍(lán)、綠四個(gè)小球,有放回地從中任取一個(gè)小球,將“三次抽取后,紅色小球,黃色小球都取到”記為事件M,用隨機(jī)模擬的方法估計(jì)事件M發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表紅、黃、藍(lán)、綠四個(gè)小球,以每三個(gè)隨機(jī)數(shù)為一組,表示取小球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

110

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件M發(fā)生的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校要從甲、乙兩名同學(xué)中選擇一人參加該市組織的數(shù)學(xué)競賽,已知甲、乙兩名同學(xué)最近7次模擬競賽的數(shù)學(xué)成績(滿分100分)如下:

:79,81,8384,8590,93;

乙:75,7882,84,90,92,94.

1)完成答題卡中的莖葉圖;

2)分別計(jì)算甲、乙兩名同學(xué)最近7次模擬競賽成績的平均數(shù)與方差,并由此判斷該校應(yīng)選擇哪位同學(xué)參加該市組織的數(shù)學(xué)競賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓M過點(diǎn)且與直線相切.

(1)求動圓圓心M的軌跡C的方程;

(2)斜率為的直線l經(jīng)過點(diǎn)且與曲線C交于AB兩點(diǎn),線段AB的中垂線交x軸于點(diǎn)N,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動點(diǎn)到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方形中,、分別為邊上的中點(diǎn),現(xiàn)將點(diǎn)為軸旋轉(zhuǎn)至點(diǎn)的位置,使得為直二面角.

(1)證明:;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案