已知函數(shù)f(x)=
1
2
ax2
-2ax+lnx(a≠0).
(1)討論f(x)的單調(diào)性
(2)若?x0∈[1+
2
2
,2]
,使不等式f(x0)+ln(a+1)>b(a2-1)-(a+1)+2ln2對(duì)任意1<a<2恒成立,求實(shí)數(shù)b的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,f′(x)=ax-2a+
1
x
=
ax2-2ax+1
x
,對(duì)a分類(lèi)討論即可得出結(jié)論;
(2)由(1)中a的范圍可判斷f(x)在(0,x1),(x1,x2),(x2,+∞)上的單調(diào)性及x2=1+
1-
1
a
<1+
2
2
,可得f(x)在[1+
2
2
,2]單調(diào)性,從而可求f(x)max=f(2),由已知整理可得不等式ln(a+1)-ba2-a+b-ln2+1>0對(duì)任意的a(1<a<2)恒成立.通過(guò)研究函數(shù)g(a)=ln(a+1)-ba2-a+b-ln2+1的單調(diào)性可求.
解答: 解:(1)∵f(x)=
1
2
ax2
-2ax+lnx(a≠0).
∴f′(x)=ax-2a+
1
x
=
ax2-2ax+1
x
,
由ax2-2ax+1=0,解得x1=
a-
a2-a
a
,x2=
a+
a2-a
a
,
∴當(dāng)a>0時(shí),f(x)在(0,x1)上遞增,在(x1,x2)上遞減,在(x2,+∞)上遞增,
當(dāng)a<0時(shí),f(x)在(0,x2)上遞增,在(x2,+∞)上遞減.
(2)由ax2-2ax+1=0,解得x1=
a-
a2-a
a
,x2=
a+
a2-a
a
,
而f(x)在(0,x1)上遞增,在(x1,x2)上遞減,在(x2,+∞)上遞增
∵1<a<2,
∴x2=1+
1-
1
a
<1+
2
2

∴f(x)在[1+
2
2
,2]單調(diào)遞增,
∴在[1+
2
2
,2]上,f(x)max=f(2)=-2a+ln2.    
∴?x0∈[1+
2
2
,2],使不等式f(x0)+ln(a+1)>b(a2-1)-(a+1)+2ln2對(duì)?a∈M恒成立,
等價(jià)于不等式-2a+ln2+ln(a+1)>b(a2-1)-(a+1)+2ln2恒成立,
即不等式ln(a+1)-ba2-a+b-ln2+1>0對(duì)任意的a(1<a<2)恒成立.
令g(a)=ln(a+1)-ba2-a+b-ln2+1,則g(1)=0,g′(a)=
-2ab(a+1+
1
2b
)
a+1
,
①當(dāng)b≥0時(shí),g′(a)=
-2ab(a+1+
1
2b
)
a+1
<0,g(a)在(1,2)上遞減.
g(a)<g(1)=0,不合題意.
②當(dāng)b<0時(shí),g′(a)=
-2ab(a+1+
1
2b
)
a+1

∵1<a<2
若-(1+
1
2b
)>1,即-
1
4
<b<0時(shí),則g(a)在(1,2)上先遞減,
∵g(1)=0,
∴1<a<2時(shí),g(a)>0不能恒成立;
若-(1+
1
2b
)≤1,即b≤-
1
4
時(shí),則g(a)在(1,2)上單調(diào)遞增,
∴g(a)>g(1)=0恒成立,
∴b的取值范圍為(-∞,-
1
4
].
點(diǎn)評(píng):本題主要考查了函數(shù)的導(dǎo)數(shù)的應(yīng)用:函數(shù)的單調(diào)性及函數(shù)的最值中的應(yīng)用,要注意分類(lèi)討論思想及構(gòu)造轉(zhuǎn)化思想的應(yīng)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
3-2x-1-
1
27
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={a1,a2,a3,a4},集合B={b1,b2,b3,b4,b5},則從A到B的子集建立的映射中,構(gòu)成一一映射的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

科學(xué)研究表明,人的體重變化是由人體內(nèi)能量的守恒遭到破壞造成的.其中,飲食引起的體重增加與人體攝入熱量成正比,代謝和運(yùn)動(dòng)引起的體重減少與體重也成正比.據(jù)此得到體重的變化規(guī)律如下:wk+1=wk+
ck+1
8000
-β•wk,式中wk為第k周周末的體重(單位:千克),ck為第k周人體攝入的熱量(單位:千卡),β稱(chēng)為代謝系數(shù),該系數(shù)因人而異.某位同學(xué)的體重為100千克.他每周攝入20000千卡熱量,體重維持不變.現(xiàn)在,他計(jì)劃在不增加運(yùn)動(dòng)的情況下,使每周攝入的熱量逐漸減少,直至達(dá)到下限10000千卡,同時(shí)體重每周減少1千克.則當(dāng)他攝入的熱量達(dá)到計(jì)劃的下限時(shí),他的體重是( 。┣Э耍
A、90B、80C、70D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一家公司計(jì)劃生產(chǎn)某種小型產(chǎn)品的月固定成本為1萬(wàn)元,每生產(chǎn)1萬(wàn)件需要再投入2萬(wàn)元,設(shè)該公司一個(gè)月內(nèi)生產(chǎn)該小型產(chǎn)品x萬(wàn)件并全部銷(xiāo)售完,每萬(wàn)件的銷(xiāo)售收入為4-x萬(wàn)元,且每萬(wàn)件國(guó)家給予補(bǔ)助2e-
2elnx
x
-
1
x
萬(wàn)元.(e為自然對(duì)數(shù)的底數(shù),e是一個(gè)常數(shù))
(Ⅰ)寫(xiě)出月利潤(rùn)f(x)(萬(wàn)元)關(guān)于月產(chǎn)量x(萬(wàn)件)的函數(shù)解析式
(Ⅱ)當(dāng)月產(chǎn)量在[1,2e]萬(wàn)件時(shí),求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤(rùn)最大值(萬(wàn)元)及此時(shí)的月生成量值(萬(wàn)件).(注:月利潤(rùn)=月銷(xiāo)售收入+月國(guó)家補(bǔ)助-月總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x3+2x2+3x+t)e-x,t∈R.
(1)若函數(shù)y=f(x)在區(qū)間[-1,2]上為減函數(shù),求t的取值范圍.
(2)若存在實(shí)數(shù)t∈[0,2],使對(duì)任意的x∈[-5,m],不等式f(x)≤x恒成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,已知bn>0(n∈N+),且a1=b1=1,a2+b3=a3,S5=5(T3+b2).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求和:
b2
T1T2
+
b3
T2T3
+…+
bn+1
TnTn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐P-ABC的四個(gè)頂點(diǎn)都在半徑為
3
的球面上,M,N分別為PA,AB的中點(diǎn).若MN⊥CM,則球心到平面ABC的距離為( 。
A、
3
B、
2
3
3
C、
3
3
D、
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠A=60°,∠A的平分線交BC于D,若AB=4,且
AD
=
1
4
AC
+
λ
AB
(λ∈R),則AD的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案