若集合A={a1,a2,a3,a4},集合B={b1,b2,b3,b4,b5},則從A到B的子集建立的映射中,構成一一映射的概率是
 
考點:古典概型及其概率計算公式,映射
專題:計算題,概率與統(tǒng)計
分析:由題意,從A到B的子集建立的映射,等價于從A到B建立的映射,有54個,構成一一映射,有
A
4
5
個,即可得出結論.
解答: 解:由題意,從A到B的子集建立的映射,等價于從A到B建立的映射,有54個,構成一一映射,有
A
4
5
個,
∴從A到B的子集建立的映射中,構成一一映射的概率是
A54
54
=
24
125

故答案為:
24
125
點評:本題考查古典概型及其概率計算公式,考查學生的計算能力,確定從A到B的子集建立的映射,等價于從A到B建立的映射是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“m=-2”是“直線mx+2y+2=0與直線2x+my+2=0平行”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4|log2x|,0<x<2
1
2
x2-5x+12,x≥2
,若存在實數(shù)a、b、c、d,滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則abcd的取值范圍是( 。
A、(16,21)
B、(16,24)
C、(17,21)
D、(18,24)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2、A為上頂點,AF1交橢圓E于另一點B,且△ABF2的周長為8,離心率e=
2
2

(1)求橢圓E的標準方程;
(2)求過D(1,0)作橢圓E的兩條互相垂直的弦,M,N分別為兩弦的中點,求證:直線MN經(jīng)過x軸上的定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1的底面三角形ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點.
(1)求
BN
的長;
(2)求cos<
BA1
,
CB1
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項的和Sn,點(n,Sn)在函數(shù)f(x)=2x2+4x圖象上,
(1)求數(shù)列{an}的通項公式;
(2)若函數(shù)g(x)=2 -x,數(shù)列{bn}滿足bn=g(n),記cn=an•bn,求數(shù)列{cn}前n項和Tn;
(3)是否存在實數(shù)λ,使得當x≤λ時,f(x)=-x2+4x-
an
n+1
≤0對任意n∈N*恒成立?若存在,求出最大的實數(shù)λ,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y-2與x成正比,且當x=1時,y=-6
(1)求y與x之間的函數(shù)關系式          
(2)若點(a,2)在這個函數(shù)圖象上,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2
-2ax+lnx(a≠0).
(1)討論f(x)的單調(diào)性
(2)若?x0∈[1+
2
2
,2]
,使不等式f(x0)+ln(a+1)>b(a2-1)-(a+1)+2ln2對任意1<a<2恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x),g(x)分別是定義在(-∞,0)∪(0,+∞)上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)>0.且g(-3)=0.則不等式f(x)g(x)<0的解集是( 。
A、(-3,0)∪(3,+∞)
B、(-3,0)∪(0,3)
C、(-∞,-3)∪(3,+∞)
D、(-∞,-3)∪(0,3)

查看答案和解析>>

同步練習冊答案