【題目】設(shè)函數(shù).

(1)若曲線在它們的交點(diǎn)處有相同的切線,求實(shí)數(shù)a,b的值;

(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1).(2)

【解析】

(1) 由曲線在它們的交點(diǎn)處有相同的切線,可得,且,可得a,b的值.

(2) 當(dāng)時(shí),可得,可得,令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,由在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),列出關(guān)于a的不等式,可得a的取值范圍.

解:(1)因?yàn)?/span>

所以,

因?yàn)榍在它們的交點(diǎn)處有相同的切線,

所以,且,即,且,

解得.

(2)當(dāng)時(shí),,

所以

,解得.

當(dāng)x變化時(shí),,的變化情況如下表:

x

a

+

0

-

0

+

極大值

極小值

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

又函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),所以有

,即

解得,所以實(shí)數(shù)a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報(bào)價(jià)三項(xiàng)評(píng)分標(biāo)準(zhǔn)進(jìn)行綜合評(píng)分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo).

分值權(quán)重表如下:

總分

技術(shù)

商務(wù)

報(bào)價(jià)

100%

50%

10%

40%

技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實(shí)力來(lái)決定的.報(bào)價(jià)表則相對(duì)靈活,報(bào)價(jià)標(biāo)的評(píng)分方法是:基準(zhǔn)價(jià)的基準(zhǔn)分是68分,若報(bào)價(jià)每高于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報(bào)價(jià)每低于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分.若報(bào)價(jià)低于基準(zhǔn)價(jià)15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分.

在某次招標(biāo)中,若基準(zhǔn)價(jià)為1000(萬(wàn)元).甲、乙兩公司綜合得分如下表:

公司

技術(shù)

商務(wù)

報(bào)價(jià)

80分

90分

A甲分

70分

100分

A乙分

甲公司報(bào)價(jià)為1100(萬(wàn)元),乙公司的報(bào)價(jià)為800(萬(wàn)元)則甲,乙公司的綜合得分,分別是( 。

A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫(xiě)出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是由菱形,平行四邊形和矩形組成的一個(gè)平面圖形,其中,,,將其沿,折起使得重合,如圖2

1)證明:圖2中的平面平面;

2)求圖2中點(diǎn)到平面的距離;

3)求圖2中二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中,,.令,數(shù)列的前項(xiàng)和為.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和;

(3)是否存在正整數(shù),(),使得,成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若對(duì)任意,都有成立,求實(shí)數(shù)的取值范圍;

(3)若過(guò)點(diǎn)可作函數(shù)圖像的三條不同切線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】司機(jī)在開(kāi)機(jī)動(dòng)車(chē)時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開(kāi)車(chē)時(shí)使用手機(jī)的情況,交警部門(mén)調(diào)查了名機(jī)動(dòng)車(chē)司機(jī),得到以下統(tǒng)計(jì):在名男性司機(jī)中,開(kāi)車(chē)時(shí)使用手機(jī)的有人,開(kāi)車(chē)時(shí)不使用手機(jī)的有人;在名女性司機(jī)中,開(kāi)車(chē)時(shí)使用手機(jī)的有人,開(kāi)車(chē)時(shí)不使用手機(jī)的有人.

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開(kāi)車(chē)時(shí)使用手機(jī)與司機(jī)的性別有關(guān);

開(kāi)車(chē)時(shí)使用手機(jī)

開(kāi)車(chē)時(shí)不使用手機(jī)

合計(jì)

男性司機(jī)人數(shù)

女性司機(jī)人數(shù)

合計(jì)

(2)以上述的樣本數(shù)據(jù)來(lái)估計(jì)總體,現(xiàn)交警部門(mén)從道路上行駛的大量機(jī)動(dòng)車(chē)中隨機(jī)抽檢3輛,記這3輛車(chē)中司機(jī)為男性且開(kāi)車(chē)時(shí)使用手機(jī)的車(chē)輛數(shù)為,若每次抽檢的結(jié)果都相互獨(dú)立,求的分布列和數(shù)學(xué)期望

參考公式與數(shù)據(jù):

參考數(shù)據(jù):

參考公式

span>,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】河北省高考改革后高中學(xué)生實(shí)施選課走班制,若某校學(xué)生選擇物理學(xué)科的人數(shù)為800人,高二期中測(cè)試后,由學(xué)生的物理成績(jī),調(diào)研選課走班制學(xué)生的學(xué)習(xí)情況及效果,為此決定從這800人中抽取人,其頻率分布情況如下:

分?jǐn)?shù)

頻數(shù)

頻率

8

0.08

18

0.18

20

0.2

0.24

15

10

0.10

5

0.05

合計(jì)

1

(1)計(jì)算表格中,,的值;

(2)為了了解成績(jī)?cè)?/span>,分?jǐn)?shù)段學(xué)生的情況,先決定利用分層抽樣的方法從這兩個(gè)分?jǐn)?shù)段中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人進(jìn)行面談,求2人來(lái)自不同分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C經(jīng)過(guò)點(diǎn),AB是拋物線C上異于點(diǎn)O的不同的兩點(diǎn),其中O為原點(diǎn).

1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

2)若,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案