18.已知m,4,n是等差數(shù)列,那么${(\sqrt{2})^m}•{(\sqrt{2})^n}$=16;mn的最大值為16.

分析 由m,4,n是等差數(shù)列,可得m+n=8.再利用指數(shù)冪的運算性質(zhì)、基本不等式的性質(zhì)即可得出.

解答 解:∵m,4,n是等差數(shù)列,
∴m+n=8.
則${(\sqrt{2})^m}•{(\sqrt{2})^n}$=$(\sqrt{2})^{m+n}$=$(\sqrt{2})^{8}$=24=16;
mn$≤(\frac{m+n}{2})^{2}$=16,當(dāng)且僅當(dāng)m=n時取等號.
因此mn的最大值為16.
故答案分別為:16;16.

點評 本題考查了等差數(shù)列的性質(zhì)、指數(shù)冪的運算性質(zhì)、基本不等式的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,O為中線BD上的一個動點,若BD=6,則$\overrightarrow{OB}•({\overrightarrow{OA}+\overrightarrow{OC}})$的最小值是(  )
A.0B.-9C.-18D.-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一雙曲線以橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的長軸頂點為焦點,漸近線與橢圓焦點與短軸頂點的連線平行.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)P點在雙曲線上,且PF1⊥PF2,求點P到x軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=ln|x|B.y=cosxC.$y=\frac{1}{x}$D.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在正方體的8個頂點,12條棱的中點,6個面的中心及正方體的中心共27個點中,共線的三點組的個數(shù)是49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,已知sin($\frac{π}{2}$+A)=$\frac{11}{14}$,cos(π-B)=-$\frac{1}{2}$.
(1)求sinA與B的值;
(2)若角A,B,C的對邊分別為a,b,c,且a=5,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)全集U={1,2,3,4,5},集合A={1,2},B={2,3,5},(∁UA)∪B=( 。
A.{3,5}B.{3,4,5}C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在標(biāo)號為0,1,2的三張卡片中隨機(jī)抽取兩張卡片,則這兩張卡片上的標(biāo)號之和為奇數(shù)的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知四棱錐S-ABCD的所有頂點在同一球面上,底面ABCD是正方形且球心O在此平面內(nèi),當(dāng)四棱錐體積取得最大值時,其面積等于16+16$\sqrt{3}$,則球O的體積等于(  )
A.$\frac{4\sqrt{2}π}{3}$B.$\frac{16\sqrt{2}π}{3}$C.$\frac{32\sqrt{2}π}{3}$D.$\frac{64\sqrt{2}π}{3}$

查看答案和解析>>

同步練習(xí)冊答案