11.一次測試中,為了了解學(xué)生的學(xué)習(xí)情況,從中抽取了n個學(xué)生的成績(滿分為100分)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名參加志愿者活動,設(shè)X表示所抽取的3名同學(xué)中得分在[80,90)內(nèi)的學(xué)生個數(shù),求X的數(shù)學(xué)期望及方差.

分析 (1)利用頻率分布直方圖,結(jié)合頻率=$\frac{頻數(shù)}{總數(shù)}$,能求出樣本容量n和頻率分布直方圖中x、y的值.
(2)由題意,分?jǐn)?shù)在[80,90)內(nèi)的有4人,分?jǐn)?shù)在[90,100]內(nèi)的有2人,成績是80分以上(含80分)的學(xué)生共6人.從而抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù)X的所有可能的取值為1,2,3,分別求出相應(yīng)的概率,由此能求出X的數(shù)學(xué)期望及方差.

解答 解:(1)由題意可知,樣本容量$n=\frac{8}{0.02×10}=40$,
$y=\frac{2}{40}÷10=0.005$,
$x=\frac{1-(0.02+0.04+0.01+0.005)×10}{10}=0.025$(1).…(6分)
注:(1)中的每一列式與計算結(jié)果均為(1分).
(2)由題意,分?jǐn)?shù)在[80,90)內(nèi)的有4人,
分?jǐn)?shù)在[90,100]內(nèi)的有2人,成績是80分以上(含80分)的學(xué)生共6人.
從而抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù)X的所有可能的取值為1,2,3.…(7分)
$P(X=1)=\frac{C_4^1C_2^2}{C_6^3}=\frac{1}{5}$,
$P(X=2)=\frac{C_4^2C_2^1}{C_6^3}=\frac{3}{5}$,
$P(X=3)=\frac{C_4^3}{C_6^3}=\frac{1}{5}$.…(10分)
所以,$E(X)=1×\frac{1}{5}+2×\frac{3}{5}+3×\frac{1}{5}=2$,
$D(X)={(1-2)^2}×\frac{1}{5}+{(2-2)^2}×\frac{3}{5}+{(3-2)^2}×\frac{1}{5}=\frac{2}{5}$.…(12分)

點(diǎn)評 本題考查頻率分布直方圖的應(yīng)用,考查離散型隨機(jī)變量的數(shù)學(xué)期望和方差的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.△ABC中,AB=2,AC=3,∠B=60°,則cosC=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{6}}}{3}$C.$-\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-4}&{x>0}\\{2x}&{x≤0}\end{array}}\right.$,則f[f(1)]的值為( 。
A.-6B.0C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x>0)}\\{f(-x)+1(x<0)}\end{array}\right.$,則f(-2)=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C所對的邊分別為a、b、c,已知a=6,sinA=$\frac{\sqrt{3}}{3}$,B=A+$\frac{π}{2}$;
(1)求b的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,M為短軸端點(diǎn),且S${\;}_{M{F}_{1}{F}_{2}}$=4,離心率為$\frac{\sqrt{2}}{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)O作兩條射線,與橢圓C分別交于A,B兩點(diǎn),且滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.證明:點(diǎn)O到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“a<0”是“函數(shù)y=x2-2ax在區(qū)間[1,+∞)上遞增”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此橢圓上存在不同的兩點(diǎn)A、B關(guān)于直線y=4x+m對稱,則實數(shù)m的取值范圍是-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.M是$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1上的動點(diǎn),已知點(diǎn)F(1,0)、P(3,1),則2|MF|-|MP|的最大值為1.

查看答案和解析>>

同步練習(xí)冊答案