1.已知|$\overrightarrow{a}$|=2,$\overrightarrow$為單位向量,$\overrightarrow{a}•\overrightarrow$=1,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影是( 。
A.-$\frac{1}{2}$B.1C.$\frac{1}{2}$D.-1

分析 根據(jù)平面向量的數(shù)量積公式解答即可.

解答 解:由已知得到向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影是:$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=1;
故選B.

點(diǎn)評 本題考查了平面向量的投影;利用了數(shù)量積的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.正方體ABCD-A1B1C1D1中,異面直線AA1與BC1所成的角為( 。
A.60°B.45°C.30°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若$x+m=\sqrt{1-{x^2}}$ 恰有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是[-1,1)∪{$\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則a${\;}_{_{1}}$+a${\;}_{_{2}}$+…+a${\;}_{_{10}}$=2036.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-4x+3)的遞增區(qū)間是( 。
A.(-∞,1)B.(3,+∞)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={1,2,3,4,5},B={x|(x-1)(x-4)<0},則A∩B=( 。
A.{1,2,3,4}B.{2,3}C.{1,2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義在R上的奇函數(shù)f(x)滿足f(x-2)=f(x),且當(dāng)x∈[1,2]時(shí),f(x)=x2-3x+2,則f(6)=0;f($\frac{1}{2}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)數(shù)列{an}的通項(xiàng)公式為:an=n2+kn(n∈N+),若數(shù)列{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)k的取值范圍是( 。
A.[-2,+∞)B.(-2,+∞)C.[-3,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{a{x}^{2}+2x+1}{x}$,x∈[1,+∞).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案