19.直線3x+4y+1=0與圓x2+y2-x+y=0相交于A、B,則AB的長度是$\frac{7}{5}$.

分析 利用圓心到直線的距離與半徑半弦長滿足的勾股定理,求出弦長即可.

解答 解:圓x2+y2-x+y=0可化為(x-$\frac{1}{2}$)2+(y+$\frac{1}{2}$)2=$\frac{1}{2}$
∴圓的圓心($\frac{1}{2}$,-$\frac{1}{2}$),半徑為$\frac{\sqrt{2}}{2}$,
∴圓心到直線的距離d=$\frac{|\frac{3}{2}-2+1|}{\sqrt{9+16}}$=$\frac{1}{10}$
∴線段AB的長度為2$\sqrt{\frac{1}{2}-\frac{1}{100}}$=$\frac{7}{5}$.
故答案為:$\frac{7}{5}$.

點評 本題考查直線與圓的位置關系,考查點到直線的距離公式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖矩形ABCD所在平面外一點P,連接PB,PB,PD,點E,F(xiàn)分別是PB,PC的中點,求證:EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(文科)如圖所示的封閉曲線C由曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,y≥0)和曲線C2:x2+y2=r2(y<0)組成,已知曲線C1過點($\sqrt{3}$,$\frac{1}{2}$),離心率為$\frac{\sqrt{3}}{2}$,點A、B分別為曲線C與x軸、y軸的一個交點.
(Ⅰ)求曲線C1和C2的方程;
(Ⅱ)若點Q是曲線C2上的任意點,求△QAB面積的最大值;
(Ⅲ)若點F為曲線C1的右焦點,直線l:y=kx+m與曲線C1相切于點M,與x軸交于點N,直線OM與直線x=$\frac{4\sqrt{3}}{3}$交于點P,求證:MF∥PN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知x,y滿足x2+y2=1,則$\frac{y-2}{x-1}$的最小值為(  )
A.$\frac{1}{2}$B.2C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知實數(shù)a,b,c,d成等比數(shù)列,對于函數(shù)y=lnx-x,當x=b時取到極大值c,則ad等于-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在正三棱錐P-ABC中,底面邊長AB=$\sqrt{2}$,側(cè)棱PA=1,M,N分別是線段PA,BC上的動點(可以和端點重合),則|MN|的取值范圍是(  )
A.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{1}{2},\sqrt{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{3}$]D.[$\frac{1}{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點$({1,\frac{3}{2}})$,離心率為$\frac{1}{2}$,設A、B橢圓C上異于左頂點P的兩個不同點,直線PA和PB的傾斜角分別為α和β,且α+β為定值θ(0<θ<π)
(Ⅰ)求橢圓C的方程;
(Ⅱ)證明直線AB恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{6^x}-m,\begin{array}{l}{x<1}\end{array}\\{x^2}-3mx+2{m^2},x≥1\end{array}$恰有2個零點,則實數(shù)m的取值范圍是[$\frac{1}{2}$,1)∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.定義:區(qū)間[x1,x2](x1<x2)的長度為x2-x1,若函數(shù)y=|log2$\frac{x}{2}$|的定義域為[m,n],值域為[0,2],則區(qū)間[m,n]長度的最小值為$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案