7.已知點P(2,2)在直線l:Ax+By+C=0上,則方程Bx-Ay+4A+C=0是( 。
A.不過點P且與l垂直的直線B.不過點P且與l平行的直線
C.過點P且與l垂直的直線D.過點P且與l平行的直線

分析 利用點P(2,2)在直線l:Ax+By+C=0上,可得C=-2A-2B,方程Bx-Ay+4A+C=0化為B(x-2)-A(y-2)=0,可定方程Bx-Ay+4A+C=0是過點P且與l垂直的直線.

解答 解:∵已知點P(2,2)在直線l:Ax+By+C=0上,
∴2A+2B+C=0,
∴C=-2A-2B,
方程Bx-Ay+4A+C=0化為B(x-2)-A(y-2)=0,
∴方程Bx-Ay+4A+C=0是過點P且與l垂直的直線,
故選:C.

點評 本題考查直線方程,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.點A(sin1,cos1)在直角坐標平面上位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設sinθ=$\frac{3}{5}$,cosθ=-$\frac{4}{5}$,則2θ的終邊所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.矩形ABCD與矩形ABEF全等,且平面ABCD⊥平面ABEF,AD=2AB=2,若$\overrightarrow{FM}$=λ$\overrightarrow{FB}$,$\overrightarrow{AN}$=μ$\overrightarrow{AC}$,λ,μ∈R,λ+μ=1,則|$\overrightarrow{MN}$|的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設f(x)=(x-1)3+x+2,{an}是公差為$\frac{1}{2}$的等差數(shù)列,且f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)=18,則a1=(  )
A.-$\frac{1}{4}$B.-$\frac{7}{4}$C.-$\frac{5}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)滿足當∈[2k-1,2k+1)(k∈Z)時f(x)=(x-2k)2,若y=f(x)與g(x)=logax圖象上關(guān)于y軸對稱的點有3對,則a的取值范圍是( 。
A.(0,2)B.(1,3)C.(2,4)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.從100張卡片(編號1~100)中任取一張卡片,則取出的卡片是7的倍數(shù)的概率是( 。
A.$\frac{3}{20}$B.$\frac{13}{100}$C.$\frac{3}{25}$D.$\frac{7}{50}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)中在($\frac{π}{4}$,$\frac{3}{4}$π)上為減函數(shù)的是( 。
A.y=-tanxB.y=cos(2x-$\frac{π}{2}$)C.y=sin2x+cos2xD.y=2cos2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知2m+n=1(m,n>0),若|3x-a|-f(x)≤$\frac{1}{m}$+$\frac{2}{n}$(a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案