分析 (Ⅰ)當t=0時,求導數(shù),確定函數(shù)的單調(diào)性,即可求函數(shù)f(x)的最大值;
(Ⅱ)先確定原方程無負實數(shù)根,令g(x)=$\frac{lnx}{x}$,求出函數(shù)的值域,方程f(x)=1無實數(shù)根,等價于1-t∉(-∞,$\frac{1}{e}$],即可證明結(jié)論;
(Ⅲ)利用函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù),確定t<1,再分類討論,即可求實數(shù)t的取值范圍.
解答 (Ⅰ)解:當t=0時,f(x)=x-ex+1,
∴f′(x)=1-ex,
∴x<0,f′(x)>0;x>0,f′(x)<0,
∴函數(shù)f(x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,
∴函數(shù)f(x)的最大值為f(0)=0;
(Ⅱ)證明:由f(x)=1,可得x=ex(1-t)>0,
∴原方程無負實數(shù)根,
故有$\frac{lnx}{x}$=1-t.
令g(x)=$\frac{lnx}{x}$,則g′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴0<x<e,g′(x)>0;x>e,f′(x)<0,
∴函數(shù)g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,
∴函數(shù)g(x)的最大值為g(e)=$\frac{1}{e}$,
∴函數(shù)g(x)的值域為(-∞,$\frac{1}{e}$];
方程f(x)=1無實數(shù)根,等價于1-t∉(-∞,$\frac{1}{e}$],
∴1-t>$\frac{1}{e}$,
∴t<1-$\frac{1}{e}$,
∴當t<1-$\frac{1}{e}$時,方程f(x)=1無實數(shù)根;
(Ⅲ)解:f′(x)=etx[1+tx-e(1-t)x]
由題設(shè),x>0,f′(x)≤0,
不妨取x=1,則f′(1)=et(1+t-e1-t)≤0,
t≥1時,e1-t≤1,1+t≤2,不成立,∴t<1.
①t≤$\frac{1}{2}$,x>0時,f′(x)=etx[1+tx-e(1-t)x]≤${e}^{\frac{x}{2}}$(1+$\frac{x}{2}$-${e}^{\frac{x}{2}}$),
由(Ⅰ)知,x-ex+1<0,∴1+$\frac{x}{2}$-${e}^{\frac{x}{2}}$<0,∴f′(x)<0,
∴函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù);
②$\frac{1}{2}$<t<1,$\frac{t}{1-t}$>1,∴$\frac{1}{1-t}$ln$\frac{t}{1-t}$>0,
令h(x)=1+tx-e(1-t)x,則h(0)=0,h′(x)=(1-t)[$\frac{t}{1-t}$-e(1-t)x]
0<x<$\frac{1}{1-t}$ln$\frac{t}{1-t}$,h′(x)>0,
∴h(x)在(0,$\frac{1}{1-t}$ln$\frac{t}{1-t}$)上單調(diào)遞增,
∴h(x)>h(0)=0,此時,f′(x)>0,
∴f(x)在(0,$\frac{1}{1-t}$ln$\frac{t}{1-t}$)上單調(diào)遞增,有f(x)>f(0)=0與題設(shè)矛盾,
綜上,當且僅當t≤$\frac{1}{2}$時,函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù).
點評 本題考查導數(shù)知識的綜合運用,考查函數(shù)的單調(diào)性與最值,考查學生分析解決問題的能力,難度大.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15$\sqrt{2}$米 | B. | 15$\sqrt{3}$米 | C. | 15($\sqrt{3}$+1)米 | D. | 15$\sqrt{6}$米 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | l | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=cos(x+\frac{5π}{2})$ | B. | $y=cos(2x+\frac{5π}{2})$ | C. | $y=sin(x+\frac{5π}{2})$ | D. | $y=sin(2x+\frac{5π}{2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com