在三棱錐A-BCD中,AC⊥底面BCD,BD⊥DC,BD=DC,AC=a,∠ABC=30°,求點C到平面ABD的距離.
考點:點、線、面間的距離計算
專題:空間位置關(guān)系與距離
分析:AC⊥底面BCD,利用線面垂直的性質(zhì)可得AC⊥BC.根據(jù)AC=a,∠ABC=30°,可得BC=
AC
tan30°
=
3
a.根據(jù)BD⊥DC,BD=DC,可得BD=CD=
3
a
2
,BD⊥AD.AD=
AC2+CD2
.設(shè)點C到平面ABD的距離為h.利用VA-BCD=VC-ABD,即可得出.
解答: 解:如圖所示,
∵AC⊥底面BCD,∴AC⊥BC.
∵AC=a,∠ABC=30°,
∴BC=
AC
tan30°
=
3
a.
∵BD⊥DC,BD=DC,
∴BD=CD=
3
a
2
,BD⊥AD.
AD=
AC2+CD2
=
a2+(
3
a
2
)2
=
10
2
a

設(shè)點C到平面ABD的距離為h.
∵VA-BCD=VC-ABD
1
3
S△BCD•AC
=
1
3
S△ABD•h

1
2
×(
3
a
2
)2•a
=
1
2
3
a
2
•10a2•h,
∴h=
15
5
a
點評:本題綜合考查了線面垂直的性質(zhì)定理、勾股定理、直角三角形的邊角關(guān)系、三垂線定理、三角形的面積計算公式、三棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三個頂點A(3,-3),B(-5,0),C(0,2).
(1)求BC所在直線方程.
(2)求BC邊上的中線所在直線方程;
(3)求BC邊上的垂直平分線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,DC=
3
,四邊形DCBE為平行四邊形,DC⊥平面ABC,
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點M,使得MO∥平面ADE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平面PAB⊥平面ABCD,且四邊形ABCD是矩形,AD:AB=3:2,△PAB為等邊三角形,F(xiàn)是線段BC上的點且滿足CF=2BF.
(1)證明:平面PAD⊥平面PAB;
(2)求直線DF與平面PAD的所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,若a1=27,a9=
1
243
,q<0,求數(shù)列{an}前8項的和S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x-2,x≤1
-
1
x
,1<x≤2
ax+a-1,x>2

(1)若a=1,求方程|f(x)|=5的解.
(2)若f(x)在(-∞,+∞)是單調(diào)遞增的,求實數(shù)a的范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司為了公司周年慶典,現(xiàn)將公司門前廣場進(jìn)行裝飾,廣場上有一垂直于地面的墻面AB高為8+8
3
m,一個垂直于地面的可移動柱子CD高為8m,現(xiàn)用燈帶對它們進(jìn)行裝飾,有兩種方法:
(1)如圖1,設(shè)柱子CD與墻面AB相距1m,在AB上取一點E,以C為支點將燈帶拉直并固定在地面F處,形成一個直線型的燈帶(圖1中虛線所示).則BE多長時燈帶最短?
(2)如圖2,設(shè)柱子CD與墻面AB相距8m,在AB上取一點E,以C為支點將燈帶拉直并固定在地面F處,再將燈帶拉直依次固定在D處、B處和E處,形成一個三角形型的燈帶(圖2中虛線所示).則BE多長時燈帶最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,an-+1=2(1+
1
n
2an
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(An2+Bn+C)•2n,試推斷是否存在常數(shù)A、B、C,使對于一切n∈N*都有an=bn+1-bn成立?若存在,求出A,B,C的值;若不存在,說明理由.
(3)求:
n
n=1
an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+x)8=a0+a1x+a2x2+…+a8x8,則a1+a2+…+a8的值是(  )
A、28
B、28-1
C、26-1
D、26

查看答案和解析>>

同步練習(xí)冊答案