2.點(diǎn)P(x,y,z)關(guān)于坐標(biāo)平面xOy對稱的點(diǎn)的坐標(biāo)是(  )
A.(-x,-y,z)B.(-x,y,z)C.(x,-y,z)D.(x,y,-z)

分析 直接利用空間點(diǎn)的坐標(biāo)的對稱性求解即可.

解答 解:點(diǎn)P(x,y,z)關(guān)于坐標(biāo)平面xOy對稱的點(diǎn)的坐標(biāo)是(x,y,-z).
故選:D.

點(diǎn)評 本題考查空間點(diǎn)的坐標(biāo)的對稱性的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$f(x)=\frac{{{e^{2x}}-1}}{e^x}$的圖象關(guān)于( 。
A.原點(diǎn)對稱B.y軸對稱C.x軸對稱D.關(guān)于x=1對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.$\int_0^1{3{x^2}dx-\int_0^1{\sqrt{1-{x^2}}dx=}}$( 。
A.$1-\frac{π}{4}$B.2C.$1+\frac{π}{4}$D.π-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}x-1,x≥1\\-x+1,x<1\end{array}\right.$.
(1)在給定的直角坐標(biāo)系中作出函數(shù)f(x)的圖象;
(2)求滿足方程f(x)=4的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=lnx+2x-6零點(diǎn)的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的是(  )
A.有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱
B.過點(diǎn)P(x0,y0)的所有直線的方程都可表示為y-y0=k(x-x0
C.已知點(diǎn)A(x0,y0)是圓C:x2+y2=1內(nèi)一點(diǎn),則直線x0x+y0y-1=0與圓C相交
D.圓柱的俯視圖可能為矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.過點(diǎn)P(1,4)作圓C:(x-2)2+(y-1)2=1的兩條切線,切點(diǎn)為A、B.
(Ⅰ)求PA和PB的長,并求出切線方程;
(Ⅱ)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“a≠2”是直線ax+2y=3與直線x+(a-1)y=1相交的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A,B分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點(diǎn),P是C上一點(diǎn),且直線AP,BP的斜率之積為2,則C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案