4.已知集合A={x|x2-6x+8≤0},B={x|x2-3x≥0},則A∩B等于(  )
A.[0,4]B.[2,3]C.[3,4]D.[2,4]

分析 求解一元二次不等式化簡集合A,B,再由交集的運算性質(zhì)計算得答案.

解答 解:A={x|x2-6x+8≤0}={x|2≤x≤4},B={x|x2-3x≥0}={x|x≤0或x≥3},
則A∩B={x|2≤x≤4}∩{x|x≤0或x≥3}=[3,4].
故選:C.

點評 本題考查了交集及其運算,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個四棱錐的三視圖如圖所示,則下列結(jié)論正確的是( 。
A.底面為直角梯形B.有一個側(cè)面是等腰直角三角形
C.有兩個側(cè)面是直角三角形D.四個側(cè)面都是直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.Sn是數(shù)列{an}前n項和,對?n∈N*,Sn+an=2n.
(1)求a1,a2,a3,a4
(2)歸納數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={0,1,2},B={x|y=$\sqrt{x-1}$},則A∩B=( 。
A.{0}B.{1}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知Q是共焦點的橢圓$\frac{{x}^{2}}{49}$$+\frac{{y}^{2}}{_{1}^{2}}$=1 與雙曲線$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{_{2}^{2}}$=1 的一個交點,焦點為F1,F(xiàn)2,則$\frac{||Q{F}_{1}|-|Q{F}_{2}||}{|Q{F}_{1}|+|Q{F}_{2}|}$=( 。
A.$\frac{4}{7}$B.$\frac{7}{4}$C.$\frac{_{1}}{_{2}}$D.$\frac{_{2}}{_{1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平行四邊形ABCD中,已知AB=4,AD=3,$\overrightarrow{CP}=3\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}=2$,則$\overrightarrow{AB}•\overrightarrow{AD}$的值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的余弦值;
(Ⅱ)若點D,E在線段BC上,且BD=DE=EC,$AE=2\sqrt{3}BD$,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.4月16日摩拜單車進駐大連市旅順口區(qū),綠色出行引領(lǐng)時尚,旅順口區(qū)進行了“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,得下列2×2列聯(lián)表:
年輕人非年輕人合計
經(jīng)常使用單車用戶10020120
不常使用單車用戶602080
合計16040200
則得到的X2=2.1(小數(shù)點后保留一位).
(附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2asin2x+2sinxcosx-a,(a為常數(shù))的圖象過點$(0,-\sqrt{3})$.
(1)求函數(shù)f(x)的值域;
(2)若將函數(shù)y=f(x)的圖象向右平移$\frac{1}{2}m$個單位后(作長度最短的平移),其圖象關(guān)于y軸對稱,求出m的值.

查看答案和解析>>

同步練習(xí)冊答案