4.如圖,已知點P是圓錐母線SA的中點,Q是底面圓周上的點,M是線段PQ的中點,當點Q在圓周上運動一周時,點M的軌跡是( 。
A.線段B.C.橢圓D.拋物線

分析 設底面圓的圓心為O,連接OP,取OP的中點O′,連接OQ,O′M,則O′M=$\frac{1}{2}$OQ,即可得到點M的軌跡.

解答 解:設底面圓的圓心為O,連接OP,取OP的中點O′,
連接OQ,O′M,則O′M=$\frac{1}{2}$OQ,
∴點M的軌跡是以O′為圓心,$\frac{1}{2}$OQ為半徑的圓,
故選:B.

點評 本題考查軌跡問題,考查學生分析解決問題的能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合P={x|x=k+$\frac{1}{2}$,k∈z},Q={x|x=$\frac{k}{2}$,k∈z},記原命題:“x∈P,則x∈Q”.那么,在原命題及其逆命題、否命題、逆否命題中,真命題的個數(shù)是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,已知橢圓C過點(0,2),其焦點為F1(-$\sqrt{5}$,0),F(xiàn)2($\sqrt{5}$,0).
(1)求橢圓C的標準方程;
(2)已知點P在橢圓C上,且PF1=4,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若數(shù)列bn=$\frac{n-2}{{2}^{n}}$,如果對任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知拋物線C:y2=2px(p≠0)的焦點F在直線2x+y-2=0上.
(1)求拋物線C的方程;
(2)已知點P是拋物線C上異于坐標原點O的任意一點,拋物線在點P處的切線分別與x軸、y軸交于點B,E,設$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求證:λ為定值;
(3)在(2)的條件下,直線PF與拋物線C交于另一點A,請問:△PAB的面積是否存在最小值?若存在,請求出最小值及此時點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知直線y=kx-3與圓x2+y2+2x-4y-4=0相交且經(jīng)過圓心,則k=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知直線l:y=x+b,圓C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)當b=4時,求直線l被圓C所截得的弦長的最大值;
(2)當b=1時,是否存在a,使得l與圓C交于A、B兩點,且滿足$\overrightarrow{OA}•\overrightarrow{OB}$=1?若存在,求出a值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓F1:(x+1)2+y2=r2與F2:(x-1)2+y2=(4-r)2(0<r<4)的公共點的軌跡為曲線E
(Ⅰ)求E的方程;
(Ⅱ)如圖,動直線l:y=kx+m與橢圓E有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知如圖平行四邊形ABCD中,點E是CD的中點,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(寫出解題過程)

查看答案和解析>>

同步練習冊答案