9.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:?x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{1}{2}$恒成立.

分析 (Ⅰ)函數(shù)的定義域是(0,+∞),求出導(dǎo)數(shù),分a≤0和a>0兩種情況討論導(dǎo)數(shù)的符號,得到單調(diào)區(qū)間.
(Ⅱ)將要證的不等式等價轉(zhuǎn)化為F(x)>0在區(qū)間(1,2)上恒成立,利用導(dǎo)數(shù)求出F(x)的最小值,只要最小值大于0即可.

解答 解:(Ⅰ)f(x)的定義域為(0,+∞),
∴$f'(x)=\frac{x-a}{x^2}$,
①若a≤0,f′(x)>0,f(x)在(0,+∞)上單調(diào)遞增,
②若a>0,當(dāng)x∈(0,a)時,f′(x)<0,f(x)在(0,a)單調(diào)遞減.
當(dāng)x∈(a,+∞)時,f′(x)>0,f(x)在(a,+∞)單調(diào)遞增.
(Ⅱ)證明:∵1<x<2,
∴l(xiāng)nx>0,x-1>0,
$要證\frac{1}{lnx}-\frac{1}{x-1}<\frac{1}{2}$
只需證$\frac{1}{lnx}<\frac{1}{2}+\frac{1}{x-1}$,
即證$\frac{1}{lnx}<\frac{x+1}{2(x-1)}$,
即證(x+1)lnx-2(x-1)>0,
令F(x)=(x+1)lnx-2(x-1),
則${F^/}(x)=lnx+\frac{(x+1)}{x}-2=lnx+\frac{1}{x}-1$,
由(Ⅰ)知,當(dāng)a=1時fmin(x)=f(1)=0,
∴f(x)>f(1),即$lnx+\frac{1}{x}-1≥0$.
∴F'(x)≥0,則F(x)在(1,2)上單調(diào)遞增,
∴F(x)>F(1)=0,
故?x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{1}{2}$恒成立.

點評 本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間即單調(diào)性,函數(shù)的零點及函數(shù)恒成立問題,要證F(x)>0,只要證F(x)的最小值大于0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=xlnx-$\frac{1}{2}a$x2+a.
(Ⅰ)當(dāng)a=1時,判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)F(x)=f(x)-x有兩個不同的極值點x1,x2
(i)求實數(shù)a的取值范圍;
(ii)求證:f(x2)>$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時,f(x)=2x2+3x,則不等式f(2x-1)≤2的解集為(  )
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[-$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,A(1,$\frac{\sqrt{2}}{2}$)為橢圓上一點,AF交y軸于點M,且M為AF的中點.
(I)求橢圓C的方程;
(II)直線l與橢圓C有且只有一個公共點A,平行于OA的直線交l于P,交橢圓C于不同的兩點D,E,問是否存在常數(shù)λ,使得|PA|2=λ|PD|•|PE|,若存在,求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an},則“{an}為等比數(shù)列”是“an2=an-1•an+1”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-1-$\frac{ax}{x-1}$.
(Ⅰ)若曲線y=f(x)在(2,f(2))處的切線過(0,-1),求a的值;
(Ⅱ)求證:當(dāng)a≤-1時,不等式f(x)•lnx≥0在(0,1)∪(1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,已知a=4cm,B=60°,A=45°,則b=2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列結(jié)論中正確的是( 。
A.?n∈N*,2n2+5n+2能被2整除是真命題
B.?n∈N*,2n2+5n+2不能被2整除是真命題
C.?n∈N*,2n2+5n+2不能被2整除是真命題
D.?n∈N*,2n2+5n+2能被2整除是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖四個游戲盤(各正方形邊長和圓的直徑都是單位1),如果撒一粒黃豆落在陰影部分,則可中獎,小明希望中獎,則應(yīng)選擇的游戲盤是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案