20.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時,f(x)=2x2+3x,則不等式f(2x-1)≤2的解集為( 。
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[-$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

分析 令f(x)=2,求得x=-2,或x=2,由不等式f(2x-1)≤2,可得-2≤2x-1≤2,由此求得x的范圍.

解答 解:f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時,f(x)=2x2+3x,
設(shè)x>0,則-x<0,∴f(-x)=2(-x)2+3(-x)=2x2-3x=f(x),
∴f(x)=2x2 -3x.
令f(x)=2,當(dāng)x≤0時,由2x2+3x=2,求得x=-2;當(dāng)x>0時,由2x2 -3x=2,求得x=2,
即f(x)=2的解為 x=-2,或x=2.
由不等式f(2x-1)≤2,可得-2≤2x-1≤2,求得-$\frac{1}{2}$≤x≤$\frac{3}{2}$,
故選:B.

點評 本題主要考查函數(shù)的單調(diào)性和奇偶性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a>0,用綜合法或分析法證明:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)x≠y,且兩數(shù)列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均為等差數(shù)列,則$\frac{_{4}-_{3}}{{a}_{2}-{a}_{1}}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{a}{x}$-1+lnx,若存在x0>0,使f(x0)≤0成立,則得取值范圍是( 。
A.a≥1B.0<a≤1C.a<1D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下說法正確的是( 。
A.1是集合N中最小的數(shù)B.0是集合Z中最小的數(shù)
C.x-3=0的解集是有限集D.長江中的魚所組成的集合是無限集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f'(x)和g'(x)分別是函數(shù)f(x)和g(x)的導(dǎo)函數(shù),若f'(x)•g'(x)≤0在區(qū)間I上恒成立,則稱函數(shù)f(x)和g(x)在區(qū)間I上單調(diào)性相反.若函數(shù)f(x)=$\frac{1}{3}$x3-3ax與函數(shù)g(x)=x2+bx在開區(qū)間(a,b)(a>0)上單調(diào)性相反,則b-a的最大值等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=xlnx,g(x)=ax-$\frac{1}{x}$-a+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x>1時,函數(shù)y=g(x)的圖象恒在函數(shù)y=$\frac{{({a+1})f(x)}}{x}$的圖象的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:?x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)PH⊥平面ABC,且PA,PB,PC相等,則H是△ABC的( 。
A.內(nèi)心B.外心C.垂心D.重心

查看答案和解析>>

同步練習(xí)冊答案