分析 由目標(biāo)函數(shù)z=x+3y的最大值為8,我們可以畫出滿足條件的平面區(qū)域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)k的方程組,消參后即可得到k的取值.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{y=x}\\{x+y=k}\end{array}\right.$,解得A($\frac{k}{2}$,$\frac{k}{2}$),
將z=x+2y轉(zhuǎn)化為:y=-$\frac{1}{2}$x+$\frac{z}{2}$,
顯然直線過A($\frac{k}{2}$,$\frac{k}{2}$)時,z最大,
z的最大值是:$\frac{k}{2}$+k=8,解得:k=$\frac{16}{3}$,
故答案為:$\frac{16}{3}$.
點評 如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組),代入另一條直線方程,消去x,y后,即可求出參數(shù)的值.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=Asin(4x+$\frac{π}{6}$) | B. | f(x)=2sin(2x+$\frac{π}{3}$)+2 | C. | f(x)=sin(4x+$\frac{π}{3}$)+2 | D. | f(x)=2sin(4x+$\frac{π}{6}$)+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 45 | C. | 50 | D. | 55 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{14}$ | B. | $\frac{3}{8}$ | C. | $\frac{27}{56}$ | D. | $\frac{55}{56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,4) | B. | (2,3) | C. | (1,3) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{π}}{3}$ | B. | $\frac{\sqrt{π}}{2}$ | C. | $\frac{\sqrt{3π}}{3}$ | D. | $\frac{\sqrt{2π}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com