【題目】如圖,三棱柱的所有棱長都是2,平面ABC,D,E分別是AC,的中點.
求證:平面;
求二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)線面垂直和面面垂直判定和性質(zhì),證得,通過三角形全等,證得,再根據(jù)線面垂直的判定定理,證得平面;
(2) 建立空間直角坐標系,向量法求二面角的余弦值.
(1)∵,D是AC的中點,∴,
∵平面ABC,∴平面平面ABC,
∴平面,∴.
又∵在正方形中,D,E分別是AC,的中點,易證得∴△A1AD≌△ACE
∴∠A1DA=∠AEC, ∵∠AEC+∠CAE=90°,∴∠A1DA+∠CAE=90° ,即.
又,∴平面.
(3)取中點F,以DF,DA,DB為x,y,z軸建立空間直角坐標系,,,,,,,,,
設(shè)平面DBE的一個法向量為,則,
令,則,
設(shè)平面的一個法向量為,則,
令,則,
設(shè)二面角的平面角為,觀察可知為鈍角,
,
∴,故二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為雙曲線的左、右焦點,過作垂直于軸的直線,并在軸上方交雙曲線于點,且.
(1)求雙曲線的方程;
(2)過圓上任意一點作切線交雙曲線于兩個不同點,中點為,若,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時,不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點的個數(shù)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日照一中為了落實“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為,草坪的每平方米的造價為(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點圖;并指出x,y 是否線性相關(guān);
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標準煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度(單位:毫克/立方米)隨著時間(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(1)若一次噴灑1個單位的去污劑,則去污時間可達幾天?
(2)若第一次噴灑1個單位的去污劑,6天后再噴灑個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值?(精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】費馬點是指三角形內(nèi)到三角形三個頂點距離之和最小的點。當(dāng)三角形三個內(nèi)角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年諾貝爾生理學(xué)或醫(yī)學(xué)獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計),設(shè)輸液開始后分鐘,瓶內(nèi)液面與進氣管的距離為厘米,已知當(dāng)時,.如果瓶內(nèi)的藥液恰好分鐘滴完.則函數(shù)的圖像為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com