分析 (1)由DD1⊥平面ABCD可得DD1⊥AC,又AC⊥BD,故而AC⊥平面B1D1DB;
(2)設(shè)AC,BD交于點O,以△B1BD1為棱錐的底面,則棱錐的高為OC,代入體積公式計算.
解答 解:(1)證明:∵DD1⊥平面ABCD,AC?平面ABCD,
∴DD1⊥AC,
∵正方形ABCD中,∴AC⊥BD,
又DD1?平面B1D1DB,BD?B1D1DB,DD1∩BD=D,
∴AC⊥平面B1D1DB.
(2)∵B1D1=$\sqrt{2}$,BB1=1,∴S${\;}_{△{B}_{1}B{D}_{1}}$=$\frac{1}{2}{B}_{1}{D}_{1}•B{B}_{1}=\frac{1}{2}×\sqrt{2}×1=\frac{\sqrt{2}}{2}$.
∵設(shè)AB,CD交點為O,則OC=$\frac{1}{2}AC$=$\frac{\sqrt{2}}{2}$.
∵AC⊥平面B1D1DB,
∴三棱錐B-CD1B1的體積V=$\frac{1}{3}{S}_{△{B}_{1}B{D}_{1}}•OC$=$\frac{1}{3}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}$=$\frac{1}{6}$.
點評 本題考查了正方體的結(jié)構(gòu)特征,線面垂直的判定,棱錐的體積計算,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | {i} | C. | {0,i} | D. | {-i,0,i} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是真命題且q是假命題 | B. | p是真命題且q是真命題 | ||
C. | p是假命題且q是真命題 | D. | p是真命題且q是假命題 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com