分析 (1)連結(jié)BD,交AC于O,連結(jié)OE,由PD∥平面ACE可知OE∥PD,故E為PB中點,從而AE⊥PB,由BC⊥平面PAB可知BC⊥AE,推出AE⊥平面PBC,得到AE⊥PC,結(jié)合PC⊥EF,推出PC⊥平面AEF;
(2)由勾股定理求出AE,PB,PC,根據(jù)Rt△PEF≌Rt△PCB,列出比例式求出EF,PF,代入體積公式計算.
解答 (1)證明連結(jié)BD,交AC于O,連結(jié)OE,
∵底面四邊形ABCD是正方形,∴O是BD中點.
∵PD∥平面ACE,PD?平面PBD,平面PBD∩平面ACE=OE,
∴PD∥OE,
∴$\frac{BE}{BP}=\frac{BO}{BD}=\frac{1}{2}$,∴E是PB的中點.
∵PA=AB,∴AE⊥PB.
∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,又AB⊥BC,PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴BC⊥平面PAB,∵AE?平面PAB,
∴AE⊥BC,又PB?平面PBC,BC?平面PBC,PB∩BC=B,
∴AE⊥平面PBC,∵PC?平面PBC,
∴AE⊥PC,又EF⊥PC,AE?平面AEF,EF?平面AEF,AE∩EF=E,
∴PC⊥平面AEF.
(2)∵PA=AB=1,底面ABCD是正方形,
∴PB=$\sqrt{2}$,AC=$\sqrt{2}$,PC=$\sqrt{3}$,
∴PE=$\frac{\sqrt{2}}{2}$,AE=$\frac{\sqrt{2}}{2}$.
∵Rt△PEF≌Rt△PCB,∴$\frac{PE}{PC}=\frac{PF}{PB}=\frac{EF}{BC}$,∴PF=$\frac{\sqrt{3}}{3}$,EF=$\frac{\sqrt{6}}{6}$.
∴S△AEF=$\frac{1}{2}×AE×EF$=$\frac{\sqrt{3}}{12}$.
∴三棱錐P-AEF的體積V=$\frac{1}{3}{S}_{△AEF}×PF$=$\frac{1}{3}×\frac{\sqrt{3}}{12}×\frac{\sqrt{3}}{3}=\frac{1}{36}$.
點評 本題考查了線面垂直的性質(zhì)與判定,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±$\frac{\sqrt{2}}{2}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{1}{2}$x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組號 | 超速分組 | 頻數(shù) | 頻率 | 頻率 組距 |
1 | [0,20%] | 176 | 0.88 | z |
2 | [20%,40%] | 12 | 0.06 | 0.0030 |
3 | [40%,60%] | 6 | y | 0.0015 |
4 | [60%,80%] | 4 | 0.02 | 0.0010 |
5 | [80%,100%] | x | 0.01 | 0.0005 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com