分析 函數(shù)的圖象開口可能向上或者向下,不論本題是那種情況,都有區(qū)間兩端點的函數(shù)值小于等于1,|f(0)|≤1,在這些條件下,用不等式的基本性質(zhì)結(jié)合放縮法證明.
解答 證明:由已知條件知f(x)=ax2+bx+c(a≠0),且|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,定義域為[-1,1]
∴|c|≤1,|a+b+c|≤1,|a-b+c|≤1;
∵|f(2)|=|4a+2b+c|=|3(a+b+c)+(a-b+c)-3c|≤|=|3(a+b+c)|+|(a-b+c)|+|-3c|≤3+1+3=7
∴|f(2)|≤7,
∴-2≤x≤2時,有-7≤f(x)≤7.
點評 本考點考查二函數(shù)的最值及其幾何意義,不等式的性質(zhì),以及不等式證明時常用的技巧放縮法的技巧.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [3,+∞) | B. | (-∞,3] | C. | [-3,+∞) | D. | (-∞,-3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 極軸對稱 | B. | 極點對稱 | C. | 射線θ=$\frac{π}{2}$對稱 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com